

Welcome to imageio’s documentation!

Imageio is a Python library that provides an easy interface to read and
write a wide range of image data, including animated images, volumetric
data, and scientific formats. It is cross-platform, runs on Python 3.5+,
and is easy to install.

Main website: https://imageio.github.io

Contents:

	Getting started
	Installation

	Usage examples

	Transitioning from Scipy

	Reference
	User API

	Docs for the formats

	Command line scripts

	Environment variables

	Standard images

	Developer documentation
	Developer API

	Writing plugins

Getting started

	Installation
	Developers

	Usage examples
	Read an image of a cat

	Read from fancy sources

	Iterate over frames in a movie

	Grab screenshot or image from the clipboard

	Grab frames from your webcam

	Convert a movie

	Read medical data (DICOM)

	Volume data

	Writing videos with FFMPEG and vaapi

	Optimizing a GIF using pygifsicle

	Transitioning from Scipy

Installing imageio

Imageio is written in pure Python, so installation is easy.
Imageio works on Python 3.5+. It also works on Pypy.
Imageio depends on Numpy and Pillow. For some formats, imageio needs
additional libraries/executables (e.g. ffmpeg), which imageio helps you
to download/install.

To install imageio, use one of the following methods:

	If you are in a conda env: conda install -c conda-forge imageio

	If you have pip: pip install imageio

	Good old python setup.py install

After installation, checkout the
examples and user api.

Still running Python 2.7? Read here.

Developers

For developers, we provide a simple mechanism to allow importing
imageio from the cloned repository. See the file imageio.proxy.py for
details.

Further imageio has the following dev-dependencies:

pip install black flake8 pytest pytest-cov sphinx numpydoc

Imageio usage examples

Some of these examples use Visvis to visualize the image data,
but one can also use Matplotlib to show the images.

Imageio provides a range of example images,
which can be used by using a URI like 'imageio:chelsea.png'. The images
are automatically downloaded if not already present on your system.
Therefore most examples below should just work.

Read an image of a cat

Probably the most important thing you’ll ever need.

import imageio

im = imageio.imread('imageio:chelsea.png')
print(im.shape)

If the image is a GIF:

import imageio

im = imageio.get_reader('cat.gif')
for frame in im:
 print(im.shape) # Each frame is a numpy matrix

If the GIF is stored in memory:

import imageio

im = imageio.get_reader(image_bytes, '.gif')

Read from fancy sources

Imageio can read from filenames, file objects, http, zipfiles and bytes.

import imageio
import visvis as vv

im = imageio.imread('http://upload.wikimedia.org/wikipedia/commons/d/de/Wikipedia_Logo_1.0.png')
vv.imshow(im)

Note: reading from HTTP and zipfiles works for many formats including png and jpeg, but may not work
for all formats (some plugins “seek” the file object, which HTTP/zip streams do not support).
In such a case one can download/extract the file first. For HTTP one can use something like
imageio.imread(imageio.core.urlopen(url).read(), '.gif').

Iterate over frames in a movie

import imageio

reader = imageio.get_reader('imageio:cockatoo.mp4')
for i, im in enumerate(reader):
 print('Mean of frame %i is %1.1f' % (i, im.mean()))

Grab screenshot or image from the clipboard

(Screenshots are supported on Windows and OS X, clipboard on Windows only.)

import imageio

im_screen = imageio.imread('<screen>')
im_clipboard = imageio.imread('<clipboard>')

Grab frames from your webcam

Use the special <video0> uri to read frames from your webcam (via
the ffmpeg plugin). You can replace the zero with another index in case
you have multiple cameras attached. You need to pip install imageio-ffmpeg
in order to use this plugin.

import imageio
import visvis as vv

reader = imageio.get_reader('<video0>')
t = vv.imshow(reader.get_next_data(), clim=(0, 255))
for im in reader:
 vv.processEvents()
 t.SetData(im)

Convert a movie

Here we take a movie and convert it to gray colors. Of course, you
can apply any kind of (image) processing to the image here …
You need to pip install imageio-ffmpeg in order to use the ffmpeg plugin.

import imageio

reader = imageio.get_reader('imageio:cockatoo.mp4')
fps = reader.get_meta_data()['fps']

writer = imageio.get_writer('~/cockatoo_gray.mp4', fps=fps)

for im in reader:
 writer.append_data(im[:, :, 1])
writer.close()

Read medical data (DICOM)

import imageio
dirname = 'path/to/dicom/files'

Read as loose images
ims = imageio.mimread(dirname, 'DICOM')
Read as volume
vol = imageio.volread(dirname, 'DICOM')
Read multiple volumes (multiple DICOM series)
vols = imageio.mvolread(dirname, 'DICOM')

Volume data

import imageio
import visvis as vv

vol = imageio.volread('imageio:stent.npz')
vv.volshow(vol)

Writing videos with FFMPEG and vaapi

Using vaapi (on Linux only) (intel only?) can help free up resources on
your laptop while you are encoding videos. One notable
difference between vaapi and x264 is that vaapi doesn’t support the color
format yuv420p.

Note, you will need ffmpeg compiled with vaapi for this to work.

import imageio
import numpy as np

All images must be of the same size
image1 = np.stack([imageio.imread('imageio:camera.png')] * 3, 2)
image2 = imageio.imread('imageio:astronaut.png')
image3 = imageio.imread('imageio:immunohistochemistry.png')

w = imageio.get_writer('my_video.mp4', format='FFMPEG', mode='I', fps=1,
 codec='h264_vaapi',
 output_params=['-vaapi_device',
 '/dev/dri/renderD128',
 '-vf',
 'format=gray|nv12,hwupload'],
 pixelformat='vaapi_vld')
w.append_data(image1)
w.append_data(image2)
w.append_data(image3)
w.close()

A little bit of explanation:

	output_params

	vaapi_device speficifies the encoding device that will be used.

	vf and format tell ffmpeg that it must upload to the dedicated
hardware. Since vaapi only supports a subset of color formats, we ensure
that the video is in either gray or nv12 before uploading it. The or
operation is acheived with |.

	pixelformat: set to 'vaapi_vld' to avoid a warning in ffmpeg.

	codec: the code you wish to use to encode the video. Make sure your
hardware supports the chosen codec. If your hardware supports h265, you
may be able to encode using 'hevc_vaapi'

Optimizing a GIF using pygifsicle

When creating a GIF [https://it.wikipedia.org/wiki/Graphics_Interchange_Format]
using imageio [https://imageio.readthedocs.io/en/stable/] the resulting images
can get quite heavy, as the created GIF is not optimized.
This can be useful when the elaboration process for the GIF is not finished yet
(for instance if some elaboration on specific frames stills need to happen),
but it can be an issue when the process is finished and the GIF is unexpectedly big.

GIF files can be compressed in several ways, the most common one method
(the one used here) is saving just the differences between the following frames.
In this example, we apply the described method to a given GIF my_gif using
pygifsicle [https://github.com/LucaCappelletti94/pygifsicle], a porting
of the general-purpose GIF editing command-line library
gifsicle [https://www.lcdf.org/gifsicle/]. To install pygifsicle and gifsicle,
read the setup on the project page [https://github.com/LucaCappelletti94/pygifsicle]:
it boils down to installing the package using pip and following
the console instructions:

pip install pygifsicle

Now, let’s start by creating a gif using imageio:

import imageio
import matplotlib.pyplot as plt

n = 100
gif_path = "test.gif"
frames_path = "{i}.jpg"

n = 100
plt.figure(figsize=(4,4))
for i, x in enumerate(range(n)):
 plt.scatter(x/n, x/n)
 plt.xlim(0, 1)
 plt.ylim(0, 1)
 plt.savefig("{i}.jpg".format(i=i))

with imageio.get_writer(gif_path, mode='I') as writer:
 for i in range(n):
 writer.append_data(imageio.imread(frames_path.format(i=i)))

This way we obtain a 2.5MB gif.

We now want to compress the created GIF.
We can either overwrite the initial one or create a new optimized one:
We start by importing the library method:

from pygifsicle import optimize

optimize(gif_path, "optimized.gif") # For creating a new one
optimize(gif_path) # For overwriting the original one

The new optimized GIF now weights 870KB, almost 3 times less.

Putting everything together:

import imageio
import matplotlib.pyplot as plt
from pygifsicle import optimize

n = 100
gif_path = "test.gif"
frames_path = "{i}.jpg"

n = 100
plt.figure(figsize=(4,4))
for i, x in enumerate(range(n)):
 plt.scatter(x/n, x/n)
 plt.xlim(0, 1)
 plt.ylim(0, 1)
 plt.savefig("{i}.jpg".format(i=i))

with imageio.get_writer(gif_path, mode='I') as writer:
 for i in range(n):
 writer.append_data(imageio.imread(frames_path.format(i=i)))

optimize(gif_path)

Transitioning from Scipy’s imread

Scipy is deprecating [https://scipy.github.io/devdocs/release.1.0.0.html#backwards-incompatible-changes]
their image I/O functionality.

This document is intended to help people coming from
Scipy [https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.imread.html]
to adapt to Imageio’s imread function.
We recommend reading the user api and checkout some
examples to get a feel of imageio.

Imageio makes use of variety of plugins to support reading images (and volumes/movies)
from many different formats. Fortunately, Pillow is the main plugin for common images,
which is the same library as used by Scipy’s imread. Note that Imageio
automatically selects a plugin based on the image to read (unless a format is
explicitly specified), but uses Pillow where possible.

In short terms: For images previously read by Scipy’s imread, imageio should
generally use Pillow as well, and imageio provides the same functionality as Scipy
in these cases. But keep in mind:

	Instead of mode, use the pilmode keyword argument.

	Instead of flatten, use the as_gray keyword argument.

	The documentation for the above arguments is not on imread,
but on the docs of the individual formats, e.g. PNG.

	Imageio’s functions all return numpy arrays, albeit as a subclass (so that
meta data can be attached).

Reference

	User API

	Docs for the formats
	Single images

	Multiple images

	Single volumes

	Multiple volumes

	Command line scripts

	Environment variables

	Standard images

Imageio’s user API

These functions represent imageio’s main interface for the user. They
provide a common API to read and write image data for a large
variety of formats. All read and write functions accept keyword
arguments, which are passed on to the format that does the actual work.
To see what keyword arguments are supported by a specific format, use
the help() function.

Functions for reading:

	imread() - read an image from the specified uri

	mimread() - read a series of images from the specified uri

	volread() - read a volume from the specified uri

	mvolread() - read a series of volumes from the specified uri

Functions for saving:

	imwrite() - write an image to the specified uri

	mimwrite() - write a series of images to the specified uri

	volwrite() - write a volume to the specified uri

	mvolwrite() - write a series of volumes to the specified uri

More control:

For a larger degree of control, imageio provides functions
get_reader() and get_writer(). They respectively return an
Reader and an Writer object, which can
be used to read/write data and meta data in a more controlled manner.
This also allows specific scientific formats to be exposed in a way
that best suits that file-format.

All read-functions return images as numpy arrays, and have a meta
attribute; the meta-data dictionary can be accessed with im.meta.
To make this work, imageio actually makes use of a subclass of
np.ndarray. If needed, the image can be converted to a plain numpy
array using np.asarray(im).

Supported resource URI’s:

All functions described here accept a URI to describe the resource to
read from or write to. These can be a wide range of things. (Imageio
takes care of handling the URI so that plugins can access the data in
an easy way.)

For reading and writing:

	a normal filename, e.g. 'c:\foo\bar.png'

	a file in a zipfile, e.g. 'c:\foo\bar.zip\eggs.png'

	a file object with a read() / write() method.

For reading:

	an http/ftp address, e.g. 'http://example.com/foo.png'

	the raw bytes of an image file

	get_reader("<video0>") to grab images from a (web) camera.

	imread("<screen>") to grab a screenshot (on Windows or OS X).

	imread("<clipboard>") to grab an image from the clipboard (on Windows).

For writing one can also use '<bytes>' or imageio.RETURN_BYTES to
make a write function return the bytes instead of writing to a file.

Note that reading from HTTP and zipfiles works for many formats including
png and jpeg, but may not work for all formats (some plugins “seek” the
file object, which HTTP/zip streams do not support). In such a case one
can download/extract the file first. For HTTP one can use something
like imageio.imread(imageio.core.urlopen(url).read(), '.gif').

	
imageio.help(name=None)

	Print the documentation of the format specified by name, or a list
of supported formats if name is omitted.

	Parameters

	
	namestr

	Can be the name of a format, a filename extension, or a full
filename. See also the formats page.

	
imageio.show_formats()

	Show a nicely formatted list of available formats

	
imageio.imread(uri, format=None, **kwargs)

	Reads an image from the specified file. Returns a numpy array, which
comes with a dict of meta data at its ‘meta’ attribute.

Note that the image data is returned as-is, and may not always have
a dtype of uint8 (and thus may differ from what e.g. PIL returns).

	Parameters

	
	uri{str, pathlib.Path, bytes, file}

	The resource to load the image from, e.g. a filename, pathlib.Path,
http address or file object, see the docs for more info.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the reader. See help()
to see what arguments are available for a particular format.

	
imageio.imwrite(uri, im, format=None, **kwargs)

	Write an image to the specified file.

	Parameters

	
	uri{str, pathlib.Path, file}

	The resource to write the image to, e.g. a filename, pathlib.Path
or file object, see the docs for more info.

	imnumpy.ndarray

	The image data. Must be NxM, NxMx3 or NxMx4.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the writer. See help()
to see what arguments are available for a particular format.

	
imageio.mimread(uri, format=None, memtest="256MB", **kwargs)

	Reads multiple images from the specified file. Returns a list of
numpy arrays, each with a dict of meta data at its ‘meta’ attribute.

	Parameters

	
	uri{str, pathlib.Path, bytes, file}

	The resource to load the images from, e.g. a filename,pathlib.Path,
http address or file object, see the docs for more info.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	memtest{bool, int, float, str}

	If truthy, this function will raise an error if the resulting
list of images consumes greater than the amount of memory specified.
This is to protect the system from using so much memory that it needs
to resort to swapping, and thereby stall the computer. E.g.
mimread('hunger_games.avi').

If the argument is a number, that will be used as the threshold number
of bytes.

If the argument is a string, it will be interpreted as a number of bytes with
SI/IEC prefixed units (e.g. ‘1kB’, ‘250MiB’, ‘80.3YB’).

	Units are case sensitive

	k, M etc. represent a 1000-fold change, where Ki, Mi etc. represent 1024-fold

	The “B” is optional, but if present, must be capitalised

If the argument is True, the default will be used, for compatibility reasons.

Default: ‘256MB’

	kwargs…

	Further keyword arguments are passed to the reader. See help()
to see what arguments are available for a particular format.

	
imageio.mimwrite(uri, ims, format=None, **kwargs)

	Write multiple images to the specified file.

	Parameters

	
	uri{str, pathlib.Path, file}

	The resource to write the images to, e.g. a filename, pathlib.Path
or file object, see the docs for more info.

	imssequence of numpy arrays

	The image data. Each array must be NxM, NxMx3 or NxMx4.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the writer. See help()
to see what arguments are available for a particular format.

	
imageio.volread(uri, format=None, **kwargs)

	Reads a volume from the specified file. Returns a numpy array, which
comes with a dict of meta data at its ‘meta’ attribute.

	Parameters

	
	uri{str, pathlib.Path, bytes, file}

	The resource to load the volume from, e.g. a filename, pathlib.Path,
http address or file object, see the docs for more info.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the reader. See help()
to see what arguments are available for a particular format.

	
imageio.volwrite(uri, vol, format=None, **kwargs)

	Write a volume to the specified file.

	Parameters

	
	uri{str, pathlib.Path, file}

	The resource to write the image to, e.g. a filename, pathlib.Path
or file object, see the docs for more info.

	volnumpy.ndarray

	The image data. Must be NxMxL (or NxMxLxK if each voxel is a tuple).

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the writer. See help()
to see what arguments are available for a particular format.

	
imageio.mvolread(uri, format=None, memtest='1GB', **kwargs)

	Reads multiple volumes from the specified file. Returns a list of
numpy arrays, each with a dict of meta data at its ‘meta’ attribute.

	Parameters

	
	uri{str, pathlib.Path, bytes, file}

	The resource to load the volumes from, e.g. a filename, pathlib.Path,
http address or file object, see the docs for more info.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	memtest{bool, int, float, str}

	If truthy, this function will raise an error if the resulting
list of images consumes greater than the amount of memory specified.
This is to protect the system from using so much memory that it needs
to resort to swapping, and thereby stall the computer. E.g.
mimread('hunger_games.avi').

If the argument is a number, that will be used as the threshold number
of bytes.

If the argument is a string, it will be interpreted as a number of bytes with
SI/IEC prefixed units (e.g. ‘1kB’, ‘250MiB’, ‘80.3YB’).

	Units are case sensitive

	k, M etc. represent a 1000-fold change, where Ki, Mi etc. represent 1024-fold

	The “B” is optional, but if present, must be capitalised

If the argument is True, the default will be used, for compatibility reasons.

Default: ‘1GB’

	kwargs…

	Further keyword arguments are passed to the reader. See help()
to see what arguments are available for a particular format.

	
imageio.mvolwrite(uri, vols, format=None, **kwargs)

	Write multiple volumes to the specified file.

	Parameters

	
	uri{str, pathlib.Path, file}

	The resource to write the volumes to, e.g. a filename, pathlib.Path
or file object, see the docs for more info.

	imssequence of numpy arrays

	The image data. Each array must be NxMxL (or NxMxLxK if each
voxel is a tuple).

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	kwargs…

	Further keyword arguments are passed to the writer. See help()
to see what arguments are available for a particular format.

	
imageio.get_reader(uri, format=None, mode='?', **kwargs)

	Returns a Reader object which can be used to read data
and meta data from the specified file.

	Parameters

	
	uri{str, pathlib.Path, bytes, file}

	The resource to load the image from, e.g. a filename, pathlib.Path,
http address or file object, see the docs for more info.

	formatstr

	The format to use to read the file. By default imageio selects
the appropriate for you based on the filename and its contents.

	mode{‘i’, ‘I’, ‘v’, ‘V’, ‘?’}

	Used to give the reader a hint on what the user expects (default “?”):
“i” for an image, “I” for multiple images, “v” for a volume,
“V” for multiple volumes, “?” for don’t care.

	kwargs…

	Further keyword arguments are passed to the reader. See help()
to see what arguments are available for a particular format.

	
imageio.get_writer(uri, format=None, mode='?', **kwargs)

	Returns a Writer object which can be used to write data
and meta data to the specified file.

	Parameters

	
	uri{str, pathlib.Path, file}

	The resource to write the image to, e.g. a filename, pathlib.Path
or file object, see the docs for more info.

	formatstr

	The format to use to write the file. By default imageio selects
the appropriate for you based on the filename.

	mode{‘i’, ‘I’, ‘v’, ‘V’, ‘?’}

	Used to give the writer a hint on what the user expects (default ‘?’):
“i” for an image, “I” for multiple images, “v” for a volume,
“V” for multiple volumes, “?” for don’t care.

	kwargs…

	Further keyword arguments are passed to the writer. See help()
to see what arguments are available for a particular format.

	
class imageio.core.format.Reader(format, request)

	The purpose of a reader object is to read data from an image
resource, and should be obtained by calling get_reader().

A reader can be used as an iterator to read multiple images,
and (if the format permits) only reads data from the file when
new data is requested (i.e. streaming). A reader can also be
used as a context manager so that it is automatically closed.

Plugins implement Reader’s for different formats. Though rare,
plugins may provide additional functionality (beyond what is
provided by the base reader class).

	Attributes

	
	closed

	Whether the reader/writer is closed.

	format

	The Format object corresponding to the current read/write operation.

	request

	The Request object corresponding to the current read/write operation.

	
close()

	Flush and close the reader/writer.
This method has no effect if it is already closed.

	
closed

	Whether the reader/writer is closed.

	
format

	The Format object corresponding to the current
read/write operation.

	
get_data(index, **kwargs)

	Read image data from the file, using the image index. The
returned image has a ‘meta’ attribute with the meta data.
Raises IndexError if the index is out of range.

Some formats may support additional keyword arguments. These are
listed in the documentation of those formats.

	
get_length()

	Get the number of images in the file. (Note: you can also
use len(reader_object).)

	The result can be:

	
	0 for files that only have meta data

	1 for singleton images (e.g. in PNG, JPEG, etc.)

	N for image series

	inf for streams (series of unknown length)

	
get_meta_data(index=None)

	Read meta data from the file. using the image index. If the
index is omitted or None, return the file’s (global) meta data.

Note that get_data also provides the meta data for the returned
image as an atrribute of that image.

The meta data is a dict, which shape depends on the format.
E.g. for JPEG, the dict maps group names to subdicts and each
group is a dict with name-value pairs. The groups represent
the different metadata formats (EXIF, XMP, etc.).

	
get_next_data(**kwargs)

	Read the next image from the series.

Some formats may support additional keyword arguments. These are
listed in the documentation of those formats.

	
iter_data()

	Iterate over all images in the series. (Note: you can also
iterate over the reader object.)

	
request

	The Request object corresponding to the
current read/write operation.

	
set_image_index(index)

	Set the internal pointer such that the next call to
get_next_data() returns the image specified by the index

	
class imageio.core.format.Writer(format, request)

	The purpose of a writer object is to write data to an image
resource, and should be obtained by calling get_writer().

A writer will (if the format permits) write data to the file
as soon as new data is provided (i.e. streaming). A writer can
also be used as a context manager so that it is automatically
closed.

Plugins implement Writer’s for different formats. Though rare,
plugins may provide additional functionality (beyond what is
provided by the base writer class).

	Attributes

	
	closed

	Whether the reader/writer is closed.

	format

	The Format object corresponding to the current read/write operation.

	request

	The Request object corresponding to the current read/write operation.

	
append_data(im, meta={})

	Append an image (and meta data) to the file. The final meta
data that is used consists of the meta data on the given
image (if applicable), updated with the given meta data.

	
close()

	Flush and close the reader/writer.
This method has no effect if it is already closed.

	
closed

	Whether the reader/writer is closed.

	
format

	The Format object corresponding to the current
read/write operation.

	
request

	The Request object corresponding to the
current read/write operation.

	
set_meta_data(meta)

	Sets the file’s (global) meta data. The meta data is a dict which
shape depends on the format. E.g. for JPEG the dict maps
group names to subdicts, and each group is a dict with
name-value pairs. The groups represents the different
metadata formats (EXIF, XMP, etc.).

Note that some meta formats may not be supported for
writing, and individual fields may be ignored without
warning if they are invalid.

Imageio formats

This page lists all formats currently supported by imageio. Each format
can support extra keyword arguments for reading and writing, which can be
specified in the call to get_reader(), get_writer(), imread(),
imwrite() etc. Further, formats are free to provide additional
methods on their Reader and Writer objects. These parameters and extra
methods are specified in the documentation for each format.

Single images

	TIFF - TIFF format

	BMP-PIL - Windows Bitmap

	BUFR-PIL - BUFR

	CUR-PIL - Windows Cursor

	DCX-PIL - Intel DCX

	DDS-PIL - DirectDraw Surface

	DIB-PIL - Windows Bitmap

	EPS-PIL - Encapsulated Postscript

	FITS-PIL - FITS

	FLI-PIL - Autodesk FLI/FLC Animation

	FPX-PIL - FlashPix

	FTEX-PIL - Texture File Format (IW2:EOC)

	GBR-PIL - GIMP brush file

	GIF-PIL - Static and animated gif (Pillow)

	GRIB-PIL - GRIB

	HDF5-PIL - HDF5

	ICNS-PIL - Mac OS icns resource

	ICO-PIL - Windows Icon

	IM-PIL - IFUNC Image Memory

	IMT-PIL - IM Tools

	IPTC-PIL - IPTC/NAA

	JPEG-PIL - JPEG (ISO 10918)

	JPEG2000-PIL - JPEG 2000 (ISO 15444)

	MCIDAS-PIL - McIdas area file

	MIC-PIL - Microsoft Image Composer

	MPO-PIL - MPO (CIPA DC-007)

	MSP-PIL - Windows Paint

	PCD-PIL - Kodak PhotoCD

	PCX-PIL - Paintbrush

	PIXAR-PIL - PIXAR raster image

	PNG-PIL - Portable network graphics

	PPM-PIL - Pbmplus image

	PSD-PIL - Adobe Photoshop

	SGI-PIL - SGI Image File Format

	SPIDER-PIL - Spider 2D image

	SUN-PIL - Sun Raster File

	TGA-PIL - Targa

	TIFF-PIL - TIFF format (Pillow)

	WMF-PIL - Windows Metafile

	XBM-PIL - X11 Bitmap

	XPM-PIL - X11 Pixel Map

	XVTHUMB-PIL - XV thumbnail image

	SCREENGRAB - Grab screenshots (Windows and OS X only)

	CLIPBOARDGRAB - Grab from clipboard (Windows only)

	BMP-FI - Windows or OS/2 Bitmap

	CUT-FI - Dr. Halo

	DDS-FI - DirectX Surface

	EXR-FI - ILM OpenEXR

	G3-FI - Raw fax format CCITT G.3

	HDR-FI - High Dynamic Range Image

	IFF-FI - IFF Interleaved Bitmap

	J2K-FI - JPEG-2000 codestream

	JNG-FI - JPEG Network Graphics

	JP2-FI - JPEG-2000 File Format

	JPEG-FI - JPEG - JFIF Compliant

	JPEG-XR-FI - JPEG XR image format

	KOALA-FI - C64 Koala Graphics

	PBM-FI - Portable Bitmap (ASCII)

	PBMRAW-FI - Portable Bitmap (RAW)

	PCD-FI - Kodak PhotoCD

	PCX-FI - Zsoft Paintbrush

	PFM-FI - Portable floatmap

	PGM-FI - Portable Greymap (ASCII)

	PGMRAW-FI - Portable Greymap (RAW)

	PICT-FI - Macintosh PICT

	PNG-FI - Portable Network Graphics

	PPM-FI - Portable Pixelmap (ASCII)

	PPMRAW-FI - Portable Pixelmap (RAW)

	PSD-FI - Adobe Photoshop

	RAS-FI - Sun Raster Image

	RAW-FI - RAW camera image

	SGI-FI - SGI Image Format

	TARGA-FI - Truevision Targa

	TIFF-FI - Tagged Image File Format

	WBMP-FI - Wireless Bitmap

	WEBP-FI - Google WebP image format

	XBM-FI - X11 Bitmap Format

	XPM-FI - X11 Pixmap Format

	ICO-FI - Windows icon

	GIF-FI - Static and animated gif (FreeImage)

	BSDF - Format based on the Binary Structured Data Format

	DICOM - Digital Imaging and Communications in Medicine

	NPZ - Numpy’s compressed array format

	FEI - FEI-SEM TIFF format

	FITS - Flexible Image Transport System (FITS) format

	ITK - Insight Segmentation and Registration Toolkit (ITK) format

	GDAL - Geospatial Data Abstraction Library

	LYTRO-LFR - Lytro Illum lfr image file

	LYTRO-ILLUM-RAW - Lytro Illum raw image file

	LYTRO-LFP - Lytro F01 lfp image file

	LYTRO-F01-RAW - Lytro F01 raw image file

	SPE - SPE file format

	DUMMY - An example format that does nothing.

Multiple images

	TIFF - TIFF format

	GIF-PIL - Static and animated gif (Pillow)

	ICO-FI - Windows icon

	GIF-FI - Static and animated gif (FreeImage)

	FFMPEG - Many video formats and cameras (via ffmpeg)

	BSDF - Format based on the Binary Structured Data Format

	DICOM - Digital Imaging and Communications in Medicine

	NPZ - Numpy’s compressed array format

	SWF - Shockwave flash

	FITS - Flexible Image Transport System (FITS) format

	ITK - Insight Segmentation and Registration Toolkit (ITK) format

	GDAL - Geospatial Data Abstraction Library

	SPE - SPE file format

	DUMMY - An example format that does nothing.

Single volumes

	TIFF - TIFF format

	BSDF - Format based on the Binary Structured Data Format

	DICOM - Digital Imaging and Communications in Medicine

	NPZ - Numpy’s compressed array format

	FEI - FEI-SEM TIFF format

	FITS - Flexible Image Transport System (FITS) format

	ITK - Insight Segmentation and Registration Toolkit (ITK) format

	GDAL - Geospatial Data Abstraction Library

	SPE - SPE file format

Multiple volumes

	TIFF - TIFF format

	BSDF - Format based on the Binary Structured Data Format

	DICOM - Digital Imaging and Communications in Medicine

	NPZ - Numpy’s compressed array format

	FITS - Flexible Image Transport System (FITS) format

	ITK - Insight Segmentation and Registration Toolkit (ITK) format

	GDAL - Geospatial Data Abstraction Library

	SPE - SPE file format

Imageio command line scripts

This page lists the command line scripts provided by imageio. To see
all options for a script, execute it with the --help option, e.g.
imageio_download_bin --help.

	imageio_download_bin: Download binary dependencies for imageio
plugins to the users application data directory. This script accepts
the parameter --package-dir which will download the binaries to
the directory where imageio is installed. This option is useful when
freezing an application with imageio. It is supported out-of-the-box
by PyInstaller version>=3.2.2.

	imageio_remove_bin: Remove binary dependencies of imageio
plugins from all directories managed by imageio. This script is
useful when there is a corrupt binary or when the user prefers the
system binary over the binary provided by imageio.

Imageio environment variables

This page lists the environment variables that imageio uses. You can
set these to control some of imageio’s behavior. Each operating system
has its own way for setting environment variables, but to set a variable
for the current Python process use
os.environ['IMAGEIO_VAR_NAME'] = 'value'.

	IMAGEIO_NO_INTERNET: If this value is “1”, “yes”, or “true” (case
insensitive), makes imageio not use the internet connection to
retrieve files (like libraries or sample data). Some plugins (e.g.
freeimage and ffmpeg) will try to use the system version in this case.

	IMAGEIO_FFMPEG_EXE: Set the path to the ffmpeg executable. Set
to simply “ffmpeg” to use your system ffmpeg executable.

	IMAGEIO_FREEIMAGE_LIB: Set the path to the freeimage library. If
not given, will prompt user to download the freeimage library.

	IMAGEIO_FORMAT_ORDER: Determine format preference. E.g. setting this
to "TIFF, -FI" will prefer the FreeImage plugin over the Pillow plugin,
but still prefer TIFF over that. Also see the formats.sort() method.

	IMAGEIO_REQUEST_TIMEOUT: Set the timeout of http/ftp request in seconds.
If not set, this defaults to 5 seconds.

	IMAGEIO_USERDIR: Set the path to the default user directory. If not
given, imageio will try ~ and if that’s not available /var/tmp.

Imageio standard images

Imageio provides a number of standard images. These include classic
2D images, as well as animated and volumetric images. To the best
of our knowledge, all the listed images are in public domain.

The image names can be loaded by using a special URI,
e.g. imread('imageio:astronaut.png').
The images are automatically downloaded (and cached in your appdata
directory).

	chelsea.bsdf [https://github.com/imageio/imageio-binaries/raw/master/images/chelsea.bsdf]: The chelsea.png in a BSDF file(for testing)

	newtonscradle.gif [https://github.com/imageio/imageio-binaries/raw/master/images/newtonscradle.gif]: Animated GIF of a newton’s cradle

	bricks.jpg [https://github.com/imageio/imageio-binaries/raw/master/images/bricks.jpg]: A (repeatable) texture of stone bricks

	meadow_cube.jpg [https://github.com/imageio/imageio-binaries/raw/master/images/meadow_cube.jpg]: A cubemap image of a meadow, e.g. to render a skybox.

	wood.jpg [https://github.com/imageio/imageio-binaries/raw/master/images/wood.jpg]: A (repeatable) texture of wooden planks

	cockatoo.mp4 [https://github.com/imageio/imageio-binaries/raw/master/images/cockatoo.mp4]: Video file of a cockatoo

	stent.npz [https://github.com/imageio/imageio-binaries/raw/master/images/stent.npz]: Volumetric image showing a stented abdominal aorta

	astronaut.png [https://github.com/imageio/imageio-binaries/raw/master/images/astronaut.png]: Image of the astronaut Eileen Collins

	camera.png [https://github.com/imageio/imageio-binaries/raw/master/images/camera.png]: Classic grayscale image of a photographer

	checkerboard.png [https://github.com/imageio/imageio-binaries/raw/master/images/checkerboard.png]: Black and white image of a chekerboard

	chelsea.png [https://github.com/imageio/imageio-binaries/raw/master/images/chelsea.png]: Image of Stefan’s cat

	clock.png [https://github.com/imageio/imageio-binaries/raw/master/images/clock.png]: Photo of a clock with motion blur (Stefan van der Walt)

	coffee.png [https://github.com/imageio/imageio-binaries/raw/master/images/coffee.png]: Image of a cup of coffee (Rachel Michetti)

	coins.png [https://github.com/imageio/imageio-binaries/raw/master/images/coins.png]: Image showing greek coins from Pompeii

	horse.png [https://github.com/imageio/imageio-binaries/raw/master/images/horse.png]: Image showing the silhouette of a horse (Andreas Preuss)

	hubble_deep_field.png [https://github.com/imageio/imageio-binaries/raw/master/images/hubble_deep_field.png]: Photograph taken by Hubble telescope (NASA)

	immunohistochemistry.png [https://github.com/imageio/imageio-binaries/raw/master/images/immunohistochemistry.png]: Immunohistochemical (IHC) staining

	moon.png [https://github.com/imageio/imageio-binaries/raw/master/images/moon.png]: Image showing a portion of the surface of the moon

	page.png [https://github.com/imageio/imageio-binaries/raw/master/images/page.png]: A scanned page of text

	text.png [https://github.com/imageio/imageio-binaries/raw/master/images/text.png]: A photograph of handdrawn text

	wikkie.png [https://github.com/imageio/imageio-binaries/raw/master/images/wikkie.png]: Image of Almar’s cat

	chelsea.zip [https://github.com/imageio/imageio-binaries/raw/master/images/chelsea.zip]: The chelsea.png in a zipfile (for testing)

Developer documentation

	Developer API

	Writing plugins
	What is a plugin

	Registering

	What methods to implement

	Example / template plugin

Imageio’s developer API

This page lists the developer documentation for imageio. Normal users
will generally not need this, except perhaps the Format class.
All these functions and classes are available in the imageio.core
namespace.

This subpackage provides the core functionality of imageio
(everything but the plugins).

Functions: appdata_dir(), asarray(), get_platform(), get_remote_file(), has_module(), image_as_uint(), load_lib(), read_n_bytes(), resource_dirs(), urlopen()

Classes: Array, BaseProgressIndicator, Dict, Format, FormatManager, Image, InternetNotAllowedError, NeedDownloadError, Request, StdoutProgressIndicator

	
imageio.core.appdata_dir(appname=None, roaming=False)

	Get the path to the application directory, where applications are allowed
to write user specific files (e.g. configurations). For non-user specific
data, consider using common_appdata_dir().
If appname is given, a subdir is appended (and created if necessary).
If roaming is True, will prefer a roaming directory (Windows Vista/7).

	
imageio.core.asarray(a)

	Pypy-safe version of np.asarray. Pypy’s np.asarray consumes a
lot of memory if the given array is an ndarray subclass. This
function does not.

	
imageio.core.get_platform()

	Get a string that specifies the platform more specific than
sys.platform does. The result can be: linux32, linux64, win32,
win64, osx32, osx64. Other platforms may be added in the future.

	
imageio.core.get_remote_file(fname, directory=None, force_download=False, auto=True)

	Get a the filename for the local version of a file from the web

	Parameters

	
	fnamestr

	The relative filename on the remote data repository to download.
These correspond to paths on
https://github.com/imageio/imageio-binaries/.

	directorystr | None

	The directory where the file will be cached if a download was
required to obtain the file. By default, the appdata directory
is used. This is also the first directory that is checked for
a local version of the file. If the directory does not exist,
it will be created.

	force_downloadbool | str

	If True, the file will be downloaded even if a local copy exists
(and this copy will be overwritten). Can also be a YYYY-MM-DD date
to ensure a file is up-to-date (modified date of a file on disk,
if present, is checked).

	autobool

	Whether to auto-download the file if its not present locally. Default
True. If False and a download is needed, raises NeedDownloadError.

	Returns

	
	fnamestr

	The path to the file on the local system.

	
imageio.core.has_module(module_name)

	Check to see if a python module is available.

	
imageio.core.image_as_uint(im, bitdepth=None)

	Convert the given image to uint (default: uint8)

If the dtype already matches the desired format, it is returned
as-is. If the image is float, and all values are between 0 and 1,
the values are multiplied by np.power(2.0, bitdepth). In all other
situations, the values are scaled such that the minimum value
becomes 0 and the maximum value becomes np.power(2.0, bitdepth)-1
(255 for 8-bit and 65535 for 16-bit).

	
imageio.core.load_lib(exact_lib_names, lib_names, lib_dirs=None)

	Load a dynamic library.

This function first tries to load the library from the given exact
names. When that fails, it tries to find the library in common
locations. It searches for files that start with one of the names
given in lib_names (case insensitive). The search is performed in
the given lib_dirs and a set of common library dirs.

Returns (ctypes_library, library_path)

	
imageio.core.read_n_bytes(file, n)

	Read n bytes from the given file, or less if the file has less
bytes. Returns zero bytes if the file is closed.

	
imageio.core.resource_dirs()

	Get a list of directories where imageio resources may be located.
The first directory in this list is the “resources” directory in
the package itself. The second directory is the appdata directory
(~/.imageio on Linux). The list further contains the application
directory (for frozen apps), and may include additional directories
in the future.

	
imageio.core.urlopen(*args, **kwargs)

	Compatibility function for the urlopen function. Raises an
RuntimeError if urlopen could not be imported (which can occur in
frozen applications.

	
class imageio.core.Array(array, meta=None)

	A subclass of np.ndarray that has a meta attribute. Get the dictionary
that contains the meta data using im.meta. Convert to a plain numpy
array using np.asarray(im).

	Attributes

	
	T

	The transposed array.

	base

	Base object if memory is from some other object.

	ctypes

	An object to simplify the interaction of the array with the ctypes module.

	data

	Python buffer object pointing to the start of the array’s data.

	dtype

	Data-type of the array’s elements.

	flags

	Information about the memory layout of the array.

	flat

	A 1-D iterator over the array.

	imag

	The imaginary part of the array.

	itemsize

	Length of one array element in bytes.

	meta

	The dict with the meta data of this image.

	nbytes

	Total bytes consumed by the elements of the array.

	ndim

	Number of array dimensions.

	real

	The real part of the array.

	shape

	Tuple of array dimensions.

	size

	Number of elements in the array.

	strides

	Tuple of bytes to step in each dimension when traversing an array.

	
meta

	The dict with the meta data of this image.

	
class imageio.core.BaseProgressIndicator(name)

	A progress indicator helps display the progres of a task to the
user. Progress can be pending, running, finished or failed.

	Each task has:

	
	a name - a short description of what needs to be done.

	an action - the current action in performing the task (e.g. a subtask)

	progress - how far the task is completed

	max - max number of progress units. If 0, the progress is indefinite

	unit - the units in which the progress is counted

	status - 0: pending, 1: in progress, 2: finished, 3: failed

This class defines an abstract interface. Subclasses should implement
_start, _stop, _update_progress(progressText), _write(message).

	
fail(message=None)

	Stop the progress with a failure, optionally specifying a message.

	
finish(message=None)

	Finish the progress, optionally specifying a message. This will
not set the progress to the maximum.

	
increase_progress(extra_progress)

	Increase the progress by a certain amount.

	
set_progress(progress=0, force=False)

	Set the current progress. To avoid unnecessary progress updates
this will only have a visual effect if the time since the last
update is > 0.1 seconds, or if force is True.

	
start(action='', unit='', max=0)

	Start the progress. Optionally specify an action, a unit,
and a maxium progress value.

	
status()

	Get the status of the progress - 0: pending, 1: in progress,
2: finished, 3: failed

	
write(message)

	Write a message during progress (such as a warning).

	
class imageio.core.Dict

	A dict in which the keys can be get and set as if they were
attributes. Very convenient in combination with autocompletion.

This Dict still behaves as much as possible as a normal dict, and
keys can be anything that are otherwise valid keys. However,
keys that are not valid identifiers or that are names of the dict
class (such as ‘items’ and ‘copy’) cannot be get/set as attributes.

	
class imageio.core.Format(name, description, extensions=None, modes=None)

	Represents an implementation to read/write a particular file format

A format instance is responsible for 1) providing information about
a format; 2) determining whether a certain file can be read/written
with this format; 3) providing a reader/writer class.

Generally, imageio will select the right format and use that to
read/write an image. A format can also be explicitly chosen in all
read/write functions. Use print(format), or help(format_name)
to see its documentation.

To implement a specific format, one should create a subclass of
Format and the Format.Reader and Format.Writer classes. see
Creating imageio plugins for details.

	Parameters

	
	namestr

	A short name of this format. Users can select a format using its name.

	descriptionstr

	A one-line description of the format.

	extensionsstr | list | None

	List of filename extensions that this format supports. If a
string is passed it should be space or comma separated. The
extensions are used in the documentation and to allow users to
select a format by file extension. It is not used to determine
what format to use for reading/saving a file.

	modesstr

	A string containing the modes that this format can handle (‘iIvV’),
“i” for an image, “I” for multiple images, “v” for a volume,
“V” for multiple volumes.
This attribute is used in the documentation and to select the
formats when reading/saving a file.

	Attributes

	
	Reader

	

	Writer

	

	description

	A short description of this format.

	doc

	The documentation for this format (name + description + docstring).

	extensions

	A list of file extensions supported by this plugin.

	modes

	A string specifying the modes that this format can handle.

	name

	The name of this format.

	
can_read(request)

	Get whether this format can read data from the specified uri.

	
can_write(request)

	Get whether this format can write data to the speciefed uri.

	
description

	A short description of this format.

	
doc

	The documentation for this format (name + description + docstring).

	
extensions

	A list of file extensions supported by this plugin.
These are all lowercase with a leading dot.

	
get_reader(request)

	Return a reader object that can be used to read data and info
from the given file. Users are encouraged to use
imageio.get_reader() instead.

	
get_writer(request)

	Return a writer object that can be used to write data and info
to the given file. Users are encouraged to use
imageio.get_writer() instead.

	
modes

	A string specifying the modes that this format can handle.

	
name

	The name of this format.

	
class imageio.core.FormatManager

	There is exactly one FormatManager object in imageio: imageio.formats.
Its purpose it to keep track of the registered formats.

The format manager supports getting a format object using indexing (by
format name or extension). When used as an iterator, this object
yields all registered format objects.

See also help().

	
add_format(format, overwrite=False)

	Register a format, so that imageio can use it. If a format with the
same name already exists, an error is raised, unless overwrite is True,
in which case the current format is replaced.

	
get_format_names()

	Get the names of all registered formats.

	
search_read_format(request)

	Search a format that can read a file according to the given request.
Returns None if no appropriate format was found. (used internally)

	
search_write_format(request)

	Search a format that can write a file according to the given request.
Returns None if no appropriate format was found. (used internally)

	
show()

	Show a nicely formatted list of available formats

	
sort(name1, name2, name3, ...)

	Sort the formats based on zero or more given names; a format with
a name that matches one of the given names will take precedence
over other formats. A match means an equal name, or ending with
that name (though the former counts higher). Case insensitive.

Format preference will match the order of the given names: using
sort('TIFF', '-FI', '-PIL') would prefer the FreeImage formats
over the Pillow formats, but prefer TIFF even more. Each time
this is called, the starting point is the default format order,
and calling sort() with no arguments will reset the order.

Be aware that using the function can affect the behavior of
other code that makes use of imageio.

Also see the IMAGEIO_FORMAT_ORDER environment variable.

	
imageio.core.Image

	alias of imageio.core.util.Array

	
exception imageio.core.InternetNotAllowedError

	Plugins that need resources can just use get_remote_file(), but
should catch this error and silently ignore it.

	
exception imageio.core.NeedDownloadError

	Is raised when a remote file is requested that is not locally
available, but which needs to be explicitly downloaded by the user.

	
class imageio.core.Request(uri, mode, **kwargs)

	Represents a request for reading or saving an image resource. This
object wraps information to that request and acts as an interface
for the plugins to several resources; it allows the user to read
from filenames, files, http, zipfiles, raw bytes, etc., but offer
a simple interface to the plugins via get_file() and
get_local_filename().

For each read/write operation a single Request instance is used and passed
to the can_read/can_write method of a format, and subsequently to
the Reader/Writer class. This allows rudimentary passing of
information between different formats and between a format and
associated reader/writer.

	Parameters

	
	uri{str, bytes, file}

	The resource to load the image from.

	modestr

	The first character is “r” or “w”, indicating a read or write
request. The second character is used to indicate the kind of data:
“i” for an image, “I” for multiple images, “v” for a volume,
“V” for multiple volumes, “?” for don’t care.

	Attributes

	
	extension

	The (lowercase) extension of the requested filename.

	filename

	The uri for which reading/saving was requested.

	firstbytes

	The first 256 bytes of the file.

	kwargs

	The dict of keyword arguments supplied by the user.

	mode

	The mode of the request.

	
extension

	The (lowercase) extension of the requested filename.
Suffixes in url’s are stripped. Can be None if the request is
not based on a filename.

	
filename

	The uri for which reading/saving was requested. This
can be a filename, an http address, or other resource
identifier. Do not rely on the filename to obtain the data,
but use get_file() or get_local_filename() instead.

	
finish()

	For internal use (called when the context of the reader/writer
exits). Finishes this request. Close open files and process
results.

	
firstbytes

	The first 256 bytes of the file. These can be used to
parse the header to determine the file-format.

	
get_file()

	Get a file object for the resource associated with this request.
If this is a reading request, the file is in read mode,
otherwise in write mode. This method is not thread safe. Plugins
should not close the file when done.

This is the preferred way to read/write the data. But if a
format cannot handle file-like objects, they should use
get_local_filename().

	
get_local_filename()

	If the filename is an existing file on this filesystem, return
that. Otherwise a temporary file is created on the local file
system which can be used by the format to read from or write to.

	
get_result()

	For internal use. In some situations a write action can have
a result (bytes data). That is obtained with this function.

	
kwargs

	The dict of keyword arguments supplied by the user.

	
mode

	The mode of the request. The first character is “r” or “w”,
indicating a read or write request. The second character is
used to indicate the kind of data:
“i” for an image, “I” for multiple images, “v” for a volume,
“V” for multiple volumes, “?” for don’t care.

	
class imageio.core.StdoutProgressIndicator(name)

	A progress indicator that shows the progress in stdout. It
assumes that the tty can appropriately deal with backspace
characters.

Creating imageio plugins

Imagio is plugin-based. Every supported format is provided with a
plugin. You can write your own plugins to make imageio support
additional formats. And we would be interested in adding such code to the
imageio codebase!

What is a plugin

In imageio, a plugin provides one or more Format objects, and
corresponding Reader and Writer classes.
Each Format object represents an implementation to read/write a
particular file format. Its Reader and Writer classes do the actual
reading/saving.

The reader and writer objects have a request attribute that can be
used to obtain information about the read or write Request, such as
user-provided keyword arguments, as well get access to the raw image
data.

Registering

Strictly speaking a format can be used stand alone. However, to allow
imageio to automatically select it for a specific file, the format must
be registered using imageio.formats.add_format().

Note that a plugin is not required to be part of the imageio package; as
long as a format is registered, imageio can use it. This makes imageio very
easy to extend.

What methods to implement

Imageio is designed such that plugins only need to implement a few
private methods. The public API is implemented by the base classes.
In effect, the public methods can be given a descent docstring which
does not have to be repeated at the plugins.

For the Format class, the following needs to be implemented/specified:

	The format needs a short name, a description, and a list of file
extensions that are common for the file-format in question.
These ase set when instantiation the Format object.

	Use a docstring to provide more detailed information about the
format/plugin, such as parameters for reading and saving that the user
can supply via keyword arguments.

	Implement _can_read(request), return a bool.
See also the Request class.

	Implement _can_write(request), dito.

For the Format.Reader class:

	Implement _open(**kwargs) to initialize the reader. Deal with the
user-provided keyword arguments here.

	Implement _close() to clean up.

	Implement _get_length() to provide a suitable length based on what
the user expects. Can be inf for streaming data.

	Implement _get_data(index) to return an array and a meta-data dict.

	Implement _get_meta_data(index) to return a meta-data dict. If index
is None, it should return the ‘global’ meta-data.

For the Format.Writer class:

	Implement _open(**kwargs) to initialize the writer. Deal with the
user-provided keyword arguments here.

	Implement _close() to clean up.

	Implement _append_data(im, meta) to add data (and meta-data).

	Implement _set_meta_data(meta) to set the global meta-data.

Example / template plugin

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

	# -*- coding: utf-8 -*-
imageio is distributed under the terms of the (new) BSD License.

""" Example plugin. You can use this as a template for your own plugin.
"""

import numpy as np

from .. import formats
from ..core import Format

class DummyFormat(Format):
 """ The dummy format is an example format that does nothing.
 It will never indicate that it can read or write a file. When
 explicitly asked to read, it will simply read the bytes. When
 explicitly asked to write, it will raise an error.

 This documentation is shown when the user does ``help('thisformat')``.

 Parameters for reading

 Specify arguments in numpy doc style here.

 Parameters for saving

 Specify arguments in numpy doc style here.

 """

 def _can_read(self, request):
 # This method is called when the format manager is searching
 # for a format to read a certain image. Return True if this format
 # can do it.
 #
 # The format manager is aware of the extensions and the modes
 # that each format can handle. It will first ask all formats
 # that *seem* to be able to read it whether they can. If none
 # can, it will ask the remaining formats if they can: the
 # extension might be missing, and this allows formats to provide
 # functionality for certain extensions, while giving preference
 # to other plugins.
 #
 # If a format says it can, it should live up to it. The format
 # would ideally check the request.firstbytes and look for a
 # header of some kind.
 #
 # The request object has:
 # request.filename: a representation of the source (only for reporting)
 # request.firstbytes: the first 256 bytes of the file.
 # request.mode[0]: read or write mode
 # request.mode[1]: what kind of data the user expects: one of 'iIvV?'

 if request.mode[1] in (self.modes + "?"):
 if request.extension in self.extensions:
 return True

 def _can_write(self, request):
 # This method is called when the format manager is searching
 # for a format to write a certain image. It will first ask all
 # formats that *seem* to be able to write it whether they can.
 # If none can, it will ask the remaining formats if they can.
 #
 # Return True if the format can do it.

 # In most cases, this code does suffice:
 if request.mode[1] in (self.modes + "?"):
 if request.extension in self.extensions:
 return True

 # -- reader

 class Reader(Format.Reader):
 def _open(self, some_option=False, length=1):
 # Specify kwargs here. Optionally, the user-specified kwargs
 # can also be accessed via the request.kwargs object.
 #
 # The request object provides two ways to get access to the
 # data. Use just one:
 # - Use request.get_file() for a file object (preferred)
 # - Use request.get_local_filename() for a file on the system
 self._fp = self.request.get_file()
 self._length = length # passed as an arg in this case for testing
 self._data = None

 def _close(self):
 # Close the reader.
 # Note that the request object will close self._fp
 pass

 def _get_length(self):
 # Return the number of images. Can be np.inf
 return self._length

 def _get_data(self, index):
 # Return the data and meta data for the given index
 if index >= self._length:
 raise IndexError("Image index %i > %i" % (index, self._length))
 # Read all bytes
 if self._data is None:
 self._data = self._fp.read()
 # Put in a numpy array
 im = np.frombuffer(self._data, "uint8")
 im.shape = len(im), 1
 # Return array and dummy meta data
 return im, {}

 def _get_meta_data(self, index):
 # Get the meta data for the given index. If index is None, it
 # should return the global meta data.
 return {} # This format does not support meta data

 # -- writer

 class Writer(Format.Writer):
 def _open(self, flags=0):
 # Specify kwargs here. Optionally, the user-specified kwargs
 # can also be accessed via the request.kwargs object.
 #
 # The request object provides two ways to write the data.
 # Use just one:
 # - Use request.get_file() for a file object (preferred)
 # - Use request.get_local_filename() for a file on the system
 self._fp = self.request.get_file()

 def _close(self):
 # Close the reader.
 # Note that the request object will close self._fp
 pass

 def _append_data(self, im, meta):
 # Process the given data and meta data.
 raise RuntimeError("The dummy format cannot write image data.")

 def set_meta_data(self, meta):
 # Process the given meta data (global for all images)
 # It is not mandatory to support this.
 raise RuntimeError("The dummy format cannot write meta data.")

Register. You register an *instance* of a Format class. Here specify:
format = DummyFormat(
 "dummy", # short name
 "An example format that does nothing.", # one line descr.
 ".foobar .nonexistentext", # list of extensions
 "iI", # modes, characters in iIvV
)
formats.add_format(format)

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 imageio	

 	
 	
 imageio.core	

 	
 	
 imageio.core.functions	

 	
 	
 imageio.plugins	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | R
 | S
 | U
 | V
 | W

A

 	
 	add_format() (imageio.core.FormatManager method)

 	appdata_dir() (in module imageio.core)

 	
 	append_data() (imageio.core.format.Writer method)

 	Array (class in imageio.core)

 	asarray() (in module imageio.core)

B

 	
 	BaseProgressIndicator (class in imageio.core)

C

 	
 	can_read() (imageio.core.Format method)

 	can_write() (imageio.core.Format method)

 	close() (imageio.core.format.Reader method)

 	(imageio.core.format.Writer method)

 	
 	closed (imageio.core.format.Reader attribute)

 	(imageio.core.format.Writer attribute)

D

 	
 	description (imageio.core.Format attribute)

 	
 	Dict (class in imageio.core)

 	doc (imageio.core.Format attribute)

E

 	
 	extension (imageio.core.Request attribute)

 	
 	extensions (imageio.core.Format attribute)

F

 	
 	fail() (imageio.core.BaseProgressIndicator method)

 	filename (imageio.core.Request attribute)

 	finish() (imageio.core.BaseProgressIndicator method)

 	(imageio.core.Request method)

 	
 	firstbytes (imageio.core.Request attribute)

 	Format (class in imageio.core)

 	format (imageio.core.format.Reader attribute)

 	(imageio.core.format.Writer attribute)

 	FormatManager (class in imageio.core)

G

 	
 	get_data() (imageio.core.format.Reader method)

 	get_file() (imageio.core.Request method)

 	get_format_names() (imageio.core.FormatManager method)

 	get_length() (imageio.core.format.Reader method)

 	get_local_filename() (imageio.core.Request method)

 	get_meta_data() (imageio.core.format.Reader method)

 	get_next_data() (imageio.core.format.Reader method)

 	
 	get_platform() (in module imageio.core)

 	get_reader() (imageio.core.Format method)

 	(in module imageio)

 	get_remote_file() (in module imageio.core)

 	get_result() (imageio.core.Request method)

 	get_writer() (imageio.core.Format method)

 	(in module imageio)

H

 	
 	has_module() (in module imageio.core)

 	
 	help() (in module imageio)

I

 	
 	Image (in module imageio.core)

 	image_as_uint() (in module imageio.core)

 	imageio (module)

 	imageio.core (module)

 	imageio.core.functions (module)

 	
 	imageio.plugins (module)

 	imread() (in module imageio)

 	imwrite() (in module imageio)

 	increase_progress() (imageio.core.BaseProgressIndicator method)

 	InternetNotAllowedError

 	iter_data() (imageio.core.format.Reader method)

K

 	
 	kwargs (imageio.core.Request attribute)

L

 	
 	load_lib() (in module imageio.core)

M

 	
 	meta (imageio.core.Array attribute)

 	mimread() (in module imageio)

 	mimwrite() (in module imageio)

 	
 	mode (imageio.core.Request attribute)

 	modes (imageio.core.Format attribute)

 	mvolread() (in module imageio)

 	mvolwrite() (in module imageio)

N

 	
 	name (imageio.core.Format attribute)

 	
 	NeedDownloadError

R

 	
 	read_n_bytes() (in module imageio.core)

 	Reader (class in imageio.core.format)

 	Request (class in imageio.core)

 	
 	request (imageio.core.format.Reader attribute)

 	(imageio.core.format.Writer attribute)

 	resource_dirs() (in module imageio.core)

S

 	
 	search_read_format() (imageio.core.FormatManager method)

 	search_write_format() (imageio.core.FormatManager method)

 	set_image_index() (imageio.core.format.Reader method)

 	set_meta_data() (imageio.core.format.Writer method)

 	set_progress() (imageio.core.BaseProgressIndicator method)

 	
 	show() (imageio.core.FormatManager method)

 	show_formats() (in module imageio)

 	sort() (imageio.core.FormatManager method)

 	start() (imageio.core.BaseProgressIndicator method)

 	status() (imageio.core.BaseProgressIndicator method)

 	StdoutProgressIndicator (class in imageio.core)

U

 	
 	urlopen() (in module imageio.core)

V

 	
 	volread() (in module imageio)

 	
 	volwrite() (in module imageio)

W

 	
 	write() (imageio.core.BaseProgressIndicator method)

 	
 	Writer (class in imageio.core.format)

Support for Python 2.7

Python 2.7 is deprecated from 2020. For more information on the
scientific Python ecosystem’s transition to Python3 only, see the
python3-statement [http://www.python3statement.org/].

Imageio 2.6.x is the last release to support Python 2.7. This release
will remain available on Pypi and conda-forge. The py2 branch may be used to
continue supporting 2.7, but one should not expect (free) contributions
from the imageio developers.

For more information on porting your code to run on Python 3, see the
python3-howto [https://docs.python.org/3/howto/pyporting.html].

BMP-FI Windows or OS/2 Bitmap

Extensions: .bmp

A BMP format based on the Freeimage library.

This format supports grayscale, RGB and RGBA images.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for saving

	compressionbool

	Whether to compress the bitmap using RLE when saving. Default False.
It seems this does not always work, but who cares, you should use
PNG anyway.

BMP-PIL Windows Bitmap

Extensions: .bmp

From the Pillow docs:

PIL reads and writes Windows and OS/2 BMP files containing 1, L, P,
or RGB data. 16-colour images are read as P images. Run-length encoding
is not supported.

The write() method sets the following
info properties:

	compression

	Set to bmp_rle if the file is run-length encoded.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

BSDF Format based on the Binary Structured Data Format

Extensions: .bsdf

The BSDF format enables reading and writing of image data in the
BSDF serialization format. This format allows storage of images, volumes,
and series thereof. Data can be of any numeric data type, and can
optionally be compressed. Each image/volume can have associated
meta data, which can consist of any data type supported by BSDF.

By default, image data is lazily loaded; the actual image data is
not read until it is requested. This allows storing multiple images
in a single file and still have fast access to individual images.
Alternatively, a series of images can be read in streaming mode, reading
images as they are read (e.g. from http).

BSDF is a simple generic binary format. It is easy to extend and there
are standard extension definitions for 2D and 3D image data.
Read more at http://bsdf.io.

Parameters for reading

	random_accessbool

	Whether individual images in the file can be read in random order.
Defaults to True for normal files, and to False when reading from HTTP.
If False, the file is read in “streaming mode”, allowing reading
files as they are read, but without support for “rewinding”.
Note that setting this to True when reading from HTTP, the whole file
is read upon opening it (since lazy loading is not possible over HTTP).

Parameters for saving

	compression{0, 1, 2}

	Use 0 or “no” for no compression, 1 or “zlib” for Zlib
compression (same as zip files and PNG), and 2 or “bz2” for Bz2
compression (more compact but slower). Default 1 (zlib).
Note that some BSDF implementations may not support compression
(e.g. JavaScript).

BUFR-PIL BUFR

Extensions: .bufr

From the Pillow docs:

New in version Pillow: 1.1.3

PIL provides a stub driver for BUFR files.

To add read or write support to your application, use
PIL.BufrStubImagePlugin.register_handler().

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

CLIPBOARDGRAB Grab from clipboard (Windows only)

Extensions: None

The ClipboardGrabFormat provided a means to grab image data from
the clipboard, using the uri “<clipboard>”

This functionality is provided via Pillow. Note that “<clipboard>” is
only supported on Windows.

Parameters for reading

No parameters.

CUR-PIL Windows Cursor

Extensions: .cur

From the Pillow docs:

CUR is used to store cursors on Windows. The CUR decoder reads the largest
available cursor. Animated cursors are not supported.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

CUT-FI Dr. Halo

Extensions: .cut

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

DCX-PIL Intel DCX

Extensions: .dcx

From the Pillow docs:

DCX is a container file format for PCX files, defined by Intel. The DCX format
is commonly used in fax applications. The DCX decoder can read files containing
1, L, P, or RGB data.

When the file is opened, only the first image is read. You can use
seek() or ImageSequence to read other images.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

DDS-FI DirectX Surface

Extensions: .dds

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

DDS-PIL DirectDraw Surface

Extensions: .dds

From the Pillow docs:

DDS is a popular container texture format used in video games and natively
supported by DirectX.
Currently, DXT1, DXT3, and DXT5 pixel formats are supported and only in RGBA
mode.

New in version Pillow: 3.4.0 DXT3

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

DIB-PIL Windows Bitmap

Extensions: None

No docs for DIB.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

DICOM Digital Imaging and Communications in Medicine

Extensions: .dcm, .ct, .mri

A format for reading DICOM images: a common format used to store
medical image data, such as X-ray, CT and MRI.

This format borrows some code (and ideas) from the pydicom project. However,
only a predefined subset of tags are extracted from the file. This allows
for great simplifications allowing us to make a stand-alone reader, and
also results in a much faster read time.

By default, only uncompressed and deflated transfer syntaxes are supported.
If gdcm or dcmtk is installed, these will be used to automatically convert
the data. See https://github.com/malaterre/GDCM/releases for installing GDCM.

This format provides functionality to group images of the same
series together, thus extracting volumes (and multiple volumes).
Using volread will attempt to yield a volume. If multiple volumes
are present, the first one is given. Using mimread will simply yield
all images in the given directory (not taking series into account).

Parameters for reading

	progress{True, False, BaseProgressIndicator}

	Whether to show progress when reading from multiple files.
Default True. By passing an object that inherits from
BaseProgressIndicator, the way in which progress is reported
can be costumized.

DUMMY An example format that does nothing.

Extensions: .foobar, .nonexistentext

The dummy format is an example format that does nothing.
It will never indicate that it can read or write a file. When
explicitly asked to read, it will simply read the bytes. When
explicitly asked to write, it will raise an error.

This documentation is shown when the user does help('thisformat').

Parameters for reading

Specify arguments in numpy doc style here.

Parameters for saving

Specify arguments in numpy doc style here.

EPS-PIL Encapsulated Postscript

Extensions: .ps, .eps

From the Pillow docs:

PIL identifies EPS files containing image data, and can read files that contain
embedded raster images (ImageData descriptors). If Ghostscript is available,
other EPS files can be read as well. The EPS driver can also write EPS
images. The EPS driver can read EPS images in L, LAB, RGB and
CMYK mode, but Ghostscript may convert the images to RGB mode rather
than leaving them in the original color space. The EPS driver can write images
in L, RGB and CMYK modes.

If Ghostscript is available, you can call the load()
method with the following parameter to affect how Ghostscript renders the EPS

	scale

	Affects the scale of the resultant rasterized image. If the EPS suggests
that the image be rendered at 100px x 100px, setting this parameter to
2 will make the Ghostscript render a 200px x 200px image instead. The
relative position of the bounding box is maintained:

im = Image.open(...)
im.size #(100,100)
im.load(scale=2)
im.size #(200,200)

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

EXR-FI ILM OpenEXR

Extensions: .exr

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

FEI FEI-SEM TIFF format

Extensions: .tif, .tiff

Provide read support for TIFFs produced by an FEI SEM microscope.

This format is based on TIFF, and supports the same parameters.

FEI microscopes append metadata as ASCII text at the end of the file,
which this reader correctly extracts.

Parameters for get_data

	discard_watermarkbool

	If True (default), discard the bottom rows of the image, which
contain no image data, only a watermark with metadata.

	watermark_heightint

	The height in pixels of the FEI watermark. The default is 70.

FFMPEG Many video formats and cameras (via ffmpeg)

Extensions: .mov, .avi, .mpg, .mpeg, .mp4, .mkv, .wmv

The ffmpeg format provides reading and writing for a wide range
of movie formats such as .avi, .mpeg, .mp4, etc. And also to read
streams from webcams and USB cameras.

To read from camera streams, supply “<video0>” as the filename,
where the “0” can be replaced with any index of cameras known to
the system.

To use this plugin, the imageio-ffmpeg library should be installed
(e.g. via pip). For most platforms this includes the ffmpeg executable.
One can use the IMAGEIO_FFMPEG_EXE environment variable to force
using a specific ffmpeg executable.

When reading from a video, the number of available frames is hard/expensive
to calculate, which is why its set to inf by default, indicating
“stream mode”. To get the number of frames before having read them all,
you can use the reader.count_frames() method (the reader will then use
imageio_ffmpeg.count_frames_and_secs() to get the exact number of
frames, note that this operation can take a few seconds on large files).
Alternatively, the number of frames can be estimated from the fps and
duration in the meta data (though these values themselves are not always
present/reliable).

Parameters for reading

	fpsscalar

	The number of frames per second to read the data at. Default None (i.e.
read at the file’s own fps). One can use this for files with a
variable fps, or in cases where imageio is unable to correctly detect
the fps.

	loopbool

	If True, the video will rewind as soon as a frame is requested
beyond the last frame. Otherwise, IndexError is raised. Default False.
Setting this to True will internally call count_frames(),
and set the reader’s length to that value instead of inf.

	sizestr | tuple

	The frame size (i.e. resolution) to read the images, e.g.
(100, 100) or “640x480”. For camera streams, this allows setting
the capture resolution. For normal video data, ffmpeg will
rescale the data.

	dtypestr | type

	The dtype for the output arrays. Determines the bit-depth that
is requested from ffmpeg. Supported dtypes: uint8, uint16.
Default: uint8.

	pixelformatstr

	The pixel format for the camera to use (e.g. “yuyv422” or
“gray”). The camera needs to support the format in order for
this to take effect. Note that the images produced by this
reader are always RGB.

	input_paramslist

	List additional arguments to ffmpeg for input file options.
(Can also be provided as ffmpeg_params for backwards compatibility)
Example ffmpeg arguments to use aggressive error handling:
[‘-err_detect’, ‘aggressive’]

	output_paramslist

	List additional arguments to ffmpeg for output file options (i.e. the
stream being read by imageio).

	print_infobool

	Print information about the video file as reported by ffmpeg.

Parameters for saving

	fpsscalar

	The number of frames per second. Default 10.

	codecstr

	the video codec to use. Default ‘libx264’, which represents the
widely available mpeg4. Except when saving .wmv files, then the
defaults is ‘msmpeg4’ which is more commonly supported for windows

	qualityfloat | None

	Video output quality. Default is 5. Uses variable bit rate. Highest
quality is 10, lowest is 0. Set to None to prevent variable bitrate
flags to FFMPEG so you can manually specify them using output_params
instead. Specifying a fixed bitrate using ‘bitrate’ disables this
parameter.

	bitrateint | None

	Set a constant bitrate for the video encoding. Default is None causing
‘quality’ parameter to be used instead. Better quality videos with
smaller file sizes will result from using the ‘quality’ variable
bitrate parameter rather than specifiying a fixed bitrate with this
parameter.

	pixelformat: str

	The output video pixel format. Default is ‘yuv420p’ which most widely
supported by video players.

	input_paramslist

	List additional arguments to ffmpeg for input file options (i.e. the
stream that imageio provides).

	output_paramslist

	List additional arguments to ffmpeg for output file options.
(Can also be provided as ffmpeg_params for backwards compatibility)
Example ffmpeg arguments to use only intra frames and set aspect ratio:
[‘-intra’, ‘-aspect’, ‘16:9’]

	ffmpeg_log_level: str

	Sets ffmpeg output log level. Default is “warning”.
Values can be “quiet”, “panic”, “fatal”, “error”, “warning”, “info”
“verbose”, or “debug”. Also prints the FFMPEG command being used by
imageio if “info”, “verbose”, or “debug”.

	macro_block_size: int

	Size constraint for video. Width and height, must be divisible by this
number. If not divisible by this number imageio will tell ffmpeg to
scale the image up to the next closest size
divisible by this number. Most codecs are compatible with a macroblock
size of 16 (default), some can go smaller (4, 8). To disable this
automatic feature set it to None or 1, however be warned many players
can’t decode videos that are odd in size and some codecs will produce
poor results or fail. See https://en.wikipedia.org/wiki/Macroblock.

FITS-PIL FITS

Extensions: .fit, .fits

From the Pillow docs:

New in version Pillow: 1.1.5

PIL provides a stub driver for FITS files.

To add read or write support to your application, use
PIL.FitsStubImagePlugin.register_handler().

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

FITS Flexible Image Transport System (FITS) format

Extensions: .fits, .fit, .fts, .fz

Flexible Image Transport System (FITS) is an open standard defining a
digital file format useful for storage, transmission and processing of
scientific and other images. FITS is the most commonly used digital
file format in astronomy.

This format requires the astropy package.

Parameters for reading

	cachebool

	If the file name is a URL, ~astropy.utils.data.download_file is used
to open the file. This specifies whether or not to save the file
locally in Astropy’s download cache (default: True).

	uintbool

	Interpret signed integer data where BZERO is the
central value and BSCALE == 1 as unsigned integer
data. For example, int16 data with BZERO = 32768
and BSCALE = 1 would be treated as uint16 data.

Note, for backward compatibility, the kwarg uint16 may
be used instead. The kwarg was renamed when support was
added for integers of any size.

	ignore_missing_endbool

	Do not issue an exception when opening a file that is
missing an END card in the last header.

	checksumbool or str

	If True, verifies that both DATASUM and
CHECKSUM card values (when present in the HDU header)
match the header and data of all HDU’s in the file. Updates to a
file that already has a checksum will preserve and update the
existing checksums unless this argument is given a value of
‘remove’, in which case the CHECKSUM and DATASUM values are not
checked, and are removed when saving changes to the file.

	disable_image_compressionbool, optional

	If True, treats compressed image HDU’s like normal
binary table HDU’s.

	do_not_scale_image_databool

	If True, image data is not scaled using BSCALE/BZERO values
when read.

	ignore_blankbool

	If True, the BLANK keyword is ignored if present.

	scale_backbool

	If True, when saving changes to a file that contained scaled
image data, restore the data to the original type and reapply the
original BSCALE/BZERO values. This could lead to loss of accuracy
if scaling back to integer values after performing floating point
operations on the data.

FLI-PIL Autodesk FLI/FLC Animation

Extensions: .fli, .flc

No docs for FLI.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

FPX-PIL FlashPix

Extensions: .fpx

From the Pillow docs:

PIL reads Kodak FlashPix files. In the current version, only the highest
resolution image is read from the file, and the viewing transform is not taken
into account.

Note

To enable full FlashPix support, you need to build and install the IJG JPEG
library before building the Python Imaging Library. See the distribution
README for details.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

FTEX-PIL Texture File Format (IW2:EOC)

Extensions: .ftc, .ftu

From the Pillow docs:

New in version Pillow: 3.2.0

The FTEX decoder reads textures used for 3D objects in
Independence War 2: Edge Of Chaos. The plugin reads a single texture
per file, in the compressed and uncompressed formats.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

G3-FI Raw fax format CCITT G.3

Extensions: .g3

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

GBR-PIL GIMP brush file

Extensions: .gbr

From the Pillow docs:

The GBR decoder reads GIMP brush files, version 1 and 2.

The write() method sets the following
info properties:

	comment

	The brush name.

	spacing

	The spacing between the brushes, in pixels. Version 2 only.

GD

PIL reads uncompressed GD files. Note that this file format cannot be
automatically identified, so you must use PIL.GdImageFile.open() to
read such a file.

The write() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

GDAL Geospatial Data Abstraction Library

Extensions: .tiff, .tif, .img, .ecw, .jpg, .jpeg

Parameters for reading

None

GIF-FI Static and animated gif (FreeImage)

Extensions: .gif

A format for reading and writing static and animated GIF, based
on the Freeimage library.

Images read with this format are always RGBA. Currently,
the alpha channel is ignored when saving RGB images with this
format.

The freeimage plugin requires a freeimage binary. If this binary
is not available on the system, it can be downloaded by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	playbackbool

	‘Play’ the GIF to generate each frame (as 32bpp) instead of
returning raw frame data when loading. Default True.

Parameters for saving

	loopint

	The number of iterations. Default 0 (meaning loop indefinitely)

	duration{float, list}

	The duration (in seconds) of each frame. Either specify one value
that is used for all frames, or one value for each frame.
Note that in the GIF format the duration/delay is expressed in
hundredths of a second, which limits the precision of the duration.

	fpsfloat

	The number of frames per second. If duration is not given, the
duration for each frame is set to 1/fps. Default 10.

	palettesizeint

	The number of colors to quantize the image to. Is rounded to
the nearest power of two. Default 256.

	quantizer{‘wu’, ‘nq’}

	
	The quantization algorithm:

	
	wu - Wu, Xiaolin, Efficient Statistical Computations for
Optimal Color Quantization

	nq (neuqant) - Dekker A. H., Kohonen neural networks for
optimal color quantization

	subrectanglesbool

	If True, will try and optimize the GIF by storing only the
rectangular parts of each frame that change with respect to the
previous. Unfortunately, this option seems currently broken
because FreeImage does not handle DisposalMethod correctly.
Default False.

GIF-PIL Static and animated gif (Pillow)

Extensions: .gif

A format for reading and writing static and animated GIF, based
on Pillow.

Images read with this format are always RGBA. Currently,
the alpha channel is ignored when saving RGB images with this
format.

Parameters for reading

None

Parameters for saving

	loopint

	The number of iterations. Default 0 (meaning loop indefinitely).

	duration{float, list}

	The duration (in seconds) of each frame. Either specify one value
that is used for all frames, or one value for each frame.
Note that in the GIF format the duration/delay is expressed in
hundredths of a second, which limits the precision of the duration.

	fpsfloat

	The number of frames per second. If duration is not given, the
duration for each frame is set to 1/fps. Default 10.

	palettesizeint

	The number of colors to quantize the image to. Is rounded to
the nearest power of two. Default 256.

	subrectanglesbool

	If True, will try and optimize the GIF by storing only the
rectangular parts of each frame that change with respect to the
previous. Default False.

GRIB-PIL GRIB

Extensions: .grib

From the Pillow docs:

New in version Pillow: 1.1.5

PIL provides a stub driver for GRIB files.

The driver requires the file to start with a GRIB header. If you have files
with embedded GRIB data, or files with multiple GRIB fields, your application
has to seek to the header before passing the file handle to PIL.

To add read or write support to your application, use
PIL.GribStubImagePlugin.register_handler().

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

HDF5-PIL HDF5

Extensions: .h5, .hdf

From the Pillow docs:

New in version Pillow: 1.1.5

PIL provides a stub driver for HDF5 files.

To add read or write support to your application, use
PIL.Hdf5StubImagePlugin.register_handler().

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

HDR-FI High Dynamic Range Image

Extensions: .hdr

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

ICNS-PIL Mac OS icns resource

Extensions: .icns

From the Pillow docs:

PIL reads and (macOS only) writes macOS .icns files. By default, the
largest available icon is read, though you can override this by setting the
size property before calling
load(). The write() method
sets the following info property:

	sizes

	A list of supported sizes found in this icon file; these are a
3-tuple, (width, height, scale), where scale is 2 for a retina
icon and 1 for a standard icon. You are permitted to use this 3-tuple
format for the size property if you set it
before calling load(); after loading, the size
will be reset to a 2-tuple containing pixel dimensions (so, e.g. if you
ask for (512, 512, 2), the final value of
size will be (1024, 1024)).

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

ICO-FI Windows icon

Extensions: .ico

An ICO format based on the Freeimage library.

This format supports grayscale, RGB and RGBA images.

The freeimage plugin requires a freeimage binary. If this binary
is not available on the system, it can be downloaded by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	makealphabool

	Convert to 32-bit and create an alpha channel from the AND-
mask when loading. Default False. Note that this returns wrong
results if the image was already RGBA.

ICO-PIL Windows Icon

Extensions: .ico

From the Pillow docs:

ICO is used to store icons on Windows. The largest available icon is read.

The save() method supports the following options:

	sizes

	A list of sizes including in this ico file; these are a 2-tuple,
(width, height); Default to [(16, 16), (24, 24), (32, 32), (48, 48),
(64, 64), (128, 128), (256, 256)]. Any sizes bigger than the original
size or 256 will be ignored.

IM

IM is a format used by LabEye and other applications based on the IFUNC image
processing library. The library reads and writes most uncompressed interchange
versions of this format.

IM is the only format that can store all internal PIL formats.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

IFF-FI IFF Interleaved Bitmap

Extensions: .iff, .lbm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

IM-PIL IFUNC Image Memory

Extensions: .im

No docs for IM.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

IMT-PIL IM Tools

Extensions: None

From the Pillow docs:

PIL reads Image Tools images containing L data.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

IPTC-PIL IPTC/NAA

Extensions: .iim

No docs for IPTC.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

ITK Insight Segmentation and Registration Toolkit (ITK) format

Extensions: .gipl, .ipl, .mha, .mhd, .nhdr, .nia, .hdr, .nrrd, .nii, .nii.gz, .img, .img.gz, .vtk, .hdf5, .lsm, .mnc, .mnc2, .mgh, .mnc, .pic, .bmp, .jpeg, .jpg, .png, .tiff, .tif, .dicom, .dcm, .gdcm

The ItkFormat uses the ITK or SimpleITK library to support a range of
ITK-related formats. It also supports a few common formats that are
also supported by the freeimage plugin (e.g. PNG and JPEG).

This format requires the itk or SimpleITK package.

Parameters for reading

None.

Parameters for saving

None.

J2K-FI JPEG-2000 codestream

Extensions: .j2k, .j2c

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

JNG-FI JPEG Network Graphics

Extensions: .jng

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

JP2-FI JPEG-2000 File Format

Extensions: .jp2

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

JPEG-FI JPEG - JFIF Compliant

Extensions: .jpg, .jif, .jpeg, .jpe

A JPEG format based on the Freeimage library.

This format supports grayscale and RGB images.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	exifrotatebool

	Automatically rotate the image according to the exif flag.
Default True. If 2 is given, do the rotation in Python instead
of freeimage.

	quickreadbool

	Read the image more quickly, at the expense of quality.
Default False.

Parameters for saving

	qualityscalar

	The compression factor of the saved image (1..100), higher
numbers result in higher quality but larger file size. Default 75.

	progressivebool

	Save as a progressive JPEG file (e.g. for images on the web).
Default False.

	optimizebool

	On saving, compute optimal Huffman coding tables (can reduce a
few percent of file size). Default False.

	baselinebool

	Save basic JPEG, without metadata or any markers. Default False.

JPEG-PIL JPEG (ISO 10918)

Extensions: .jfif, .jpe, .jpg, .jpeg

A JPEG format based on Pillow.

This format supports grayscale, RGB and RGBA images.

Parameters for reading

	exifrotatebool

	Automatically rotate the image according to exif flag. Default True.

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

Parameters for saving

	qualityscalar

	The compression factor of the saved image (1..100), higher
numbers result in higher quality but larger file size. Default 75.

	progressivebool

	Save as a progressive JPEG file (e.g. for images on the web).
Default False.

	optimizebool

	On saving, compute optimal Huffman coding tables (can reduce a few
percent of file size). Default False.

	dpituple of int

	The pixel density, (x,y).

	icc_profileobject

	If present and true, the image is stored with the provided ICC profile.
If this parameter is not provided, the image will be saved with no
profile attached.

	exifdict

	If present, the image will be stored with the provided raw EXIF data.

	subsamplingstr

	Sets the subsampling for the encoder. See Pillow docs for details.

	qtablesobject

	Set the qtables for the encoder. See Pillow docs for details.

JPEG-XR-FI JPEG XR image format

Extensions: .jxr, .wdp, .hdp

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

JPEG2000-PIL JPEG 2000 (ISO 15444)

Extensions: .jp2, .j2k, .jpc, .jpf, .jpx, .j2c

A JPEG 2000 format based on Pillow.

This format supports grayscale and RGB images.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

Parameters for saving

	quality_mode

	Either “rates” or “dB” depending on the units you want to use to
specify image quality.

	quality

	Approximate size reduction (if quality mode is rates) or a signal to noise ratio
in decibels (if quality mode is dB).

Note

To enable JPEG 2000 support, you need to build and install the OpenJPEG
library, version 2.0.0 or higher, before building the Python Imaging
Library.

Windows users can install the OpenJPEG binaries available on the
OpenJPEG website, but must add them to their PATH in order to use PIL (if
you fail to do this, you will get errors about not being able to load the
_imaging DLL).

KOALA-FI C64 Koala Graphics

Extensions: .koa

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

LYTRO-F01-RAW Lytro F01 raw image file

Extensions: .raw

This is the Lytro RAW format for the original F01 Lytro camera.
The raw format is a 12bit image format as used by the Lytro F01
light field camera. The format will read the specified raw file and will
try to load a .txt or .json file with the associated meta data.
This format does not support writing.

Parameters for reading

None

LYTRO-ILLUM-RAW Lytro Illum raw image file

Extensions: .raw

This is the Lytro Illum RAW format.
The raw format is a 10bit image format as used by the Lytro Illum
light field camera. The format will read the specified raw file and will
try to load a .txt or .json file with the associated meta data.
This format does not support writing.

Parameters for reading

None

LYTRO-LFP Lytro F01 lfp image file

Extensions: .lfp

This is the Lytro Illum LFP format.
The lfp is a image and meta data container format as used by the
Lytro F01 light field camera.
The format will read the specified lfp file.
This format does not support writing.

Parameters for reading

None

LYTRO-LFR Lytro Illum lfr image file

Extensions: .lfr

This is the Lytro Illum LFR format.
The lfr is a image and meta data container format as used by the
Lytro Illum light field camera.
The format will read the specified lfr file.
This format does not support writing.

Parameters for reading

None

MCIDAS-PIL McIdas area file

Extensions: None

From the Pillow docs:

PIL identifies and reads 8-bit McIdas area files.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

MIC-PIL Microsoft Image Composer

Extensions: .mic

From the Pillow docs:

PIL identifies and reads Microsoft Image Composer (MIC) files. When opened, the
first sprite in the file is loaded. You can use seek() and
tell() to read other sprites from the file.

Note that there may be an embedded gamma of 2.2 in MIC files.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

MPO-PIL MPO (CIPA DC-007)

Extensions: .mpo

From the Pillow docs:

Pillow identifies and reads Multi Picture Object (MPO) files, loading the primary
image when first opened. The seek() and tell()
methods may be used to read other pictures from the file. The pictures are
zero-indexed and random access is supported.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

MSP-PIL Windows Paint

Extensions: .msp

From the Pillow docs:

PIL identifies and reads MSP files from Windows 1 and 2. The library writes
uncompressed (Windows 1) versions of this format.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

NPZ Numpy’s compressed array format

Extensions: .npz

NPZ is a file format by numpy that provides storage of array
data using gzip compression. This imageio plugin supports data of any
shape, and also supports multiple images per file.

However, the npz format does not provide streaming; all data is
read/written at once. Further, there is no support for meta data.

Beware that the numpy npz format has a bug on a certain combination
of Python 2.7 and numpy, which can cause the resulting files to
become unreadable on Python 3. Also, this format is not available
on Pypy.

See the BSDF format for a similar (but more fully featured) format.

Parameters for reading

None

Parameters for saving

None

PBM-FI Portable Bitmap (ASCII)

Extensions: .pbm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PBMRAW-FI Portable Bitmap (RAW)

Extensions: .pbm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PCD-FI Kodak PhotoCD

Extensions: .pcd

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PCD-PIL Kodak PhotoCD

Extensions: .pcd

From the Pillow docs:

PIL reads PhotoCD files containing RGB data. This only reads the 768x512
resolution image from the file. Higher resolutions are encoded in a proprietary
encoding.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

PCX-FI Zsoft Paintbrush

Extensions: .pcx

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PCX-PIL Paintbrush

Extensions: .pcx

From the Pillow docs:

PIL reads and writes PCX files containing 1, L, P, or RGB data.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

PFM-FI Portable floatmap

Extensions: .pfm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PGM-FI Portable Greymap (ASCII)

Extensions: .pgm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PGMRAW-FI Portable Greymap (RAW)

Extensions: .pgm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PICT-FI Macintosh PICT

Extensions: .pct, .pict, .pic

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PIXAR-PIL PIXAR raster image

Extensions: .pxr

From the Pillow docs:

PIL provides limited support for PIXAR raster files. The library can identify
and read “dumped” RGB files.

The format code is PIXAR.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

PNG-FI Portable Network Graphics

Extensions: .png

A PNG format based on the Freeimage library.

This format supports grayscale, RGB and RGBA images.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	ignoregammabool

	Avoid gamma correction. Default True.

Parameters for saving

	compression{0, 1, 6, 9}

	The compression factor. Higher factors result in more
compression at the cost of speed. Note that PNG compression is
always lossless. Default 9.

	quantizeint

	If specified, turn the given RGB or RGBA image in a paletted image
for more efficient storage. The value should be between 2 and 256.
If the value of 0 the image is not quantized.

	interlacedbool

	Save using Adam7 interlacing. Default False.

PNG-PIL Portable network graphics

Extensions: .png

A PNG format based on Pillow.

This format supports grayscale, RGB and RGBA images.

Parameters for reading

	ignoregammabool

	Avoid gamma correction. Default True.

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

Parameters for saving

	optimizebool

	If present and true, instructs the PNG writer to make the output file
as small as possible. This includes extra processing in order to find
optimal encoder settings.

	transparency:

	This option controls what color image to mark as transparent.

	dpi: tuple of two scalars

	The desired dpi in each direction.

	pnginfo: PIL.PngImagePlugin.PngInfo

	Object containing text tags.

	compress_level: int

	ZLIB compression level, a number between 0 and 9: 1 gives best speed,
9 gives best compression, 0 gives no compression at all. Default is 9.
When optimize option is True compress_level has no effect
(it is set to 9 regardless of a value passed).

	compression: int

	Compatibility with the freeimage PNG format. If given, it overrides
compress_level.

	icc_profile:

	The ICC Profile to include in the saved file.

	bits (experimental): int

	This option controls how many bits to store. If omitted,
the PNG writer uses 8 bits (256 colors).

	quantize:

	Compatibility with the freeimage PNG format. If given, it overrides
bits. In this case, given as a number between 1-256.

	dictionary (experimental): dict

	Set the ZLIB encoder dictionary.

	prefer_uint8: bool

	Let the PNG writer truncate uint16 image arrays to uint8 if their values fall
within the range [0, 255]. Defaults to true for legacy compatibility, however
it is recommended to set this to false to avoid unexpected behavior when
saving e.g. weakly saturated images.

PPM-FI Portable Pixelmap (ASCII)

Extensions: .ppm

A PNM format based on the Freeimage library.

This format supports single bit (PBM), grayscale (PGM) and RGB (PPM)
images, even with ASCII or binary coding.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for saving

	use_asciibool

	Save with ASCII coding. Default True.

PPM-PIL Pbmplus image

Extensions: .pbm, .pgm, .ppm

From the Pillow docs:

PIL reads and writes PBM, PGM and PPM files containing 1, L or RGB
data.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

PPMRAW-FI Portable Pixelmap (RAW)

Extensions: .ppm

A PNM format based on the Freeimage library.

This format supports single bit (PBM), grayscale (PGM) and RGB (PPM)
images, even with ASCII or binary coding.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for saving

	use_asciibool

	Save with ASCII coding. Default True.

PSD-FI Adobe Photoshop

Extensions: .psd

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

PSD-PIL Adobe Photoshop

Extensions: .psd

From the Pillow docs:

PIL identifies and reads PSD files written by Adobe Photoshop 2.5 and 3.0.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

RAS-FI Sun Raster Image

Extensions: .ras

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

RAW-FI RAW camera image

Extensions: .3fr, .arw, .bay, .bmq, .cap, .cine, .cr2, .crw, .cs1, .dc2, .dcr, .drf, .dsc, .dng, .erf, .fff, .ia, .iiq, .k25, .kc2, .kdc, .mdc, .mef, .mos, .mrw, .nef, .nrw, .orf, .pef, .ptx, .pxn, .qtk, .raf, .raw, .rdc, .rw2, .rwl, .rwz, .sr2, .srf, .srw, .sti

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

SCREENGRAB Grab screenshots (Windows and OS X only)

Extensions: None

The ScreenGrabFormat provided a means to grab screenshots using
the uri of “<screen>”.

This functionality is provided via Pillow. Note that “<screen>” is
only supported on Windows and OS X.

Parameters for reading

No parameters.

SGI-FI SGI Image Format

Extensions: .sgi, .rgb, .rgba, .bw

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

SGI-PIL SGI Image File Format

Extensions: .bw, .rgb, .rgba, .sgi

From the Pillow docs:

Pillow reads and writes uncompressed L, RGB, and RGBA files.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

SPE SPE file format

Extensions: .spe

Some CCD camera software produces images in the Princeton Instruments
SPE file format. This plugin supports reading such files.

Parameters for reading

	char_encodingstr

	Character encoding used to decode strings in the metadata. Defaults
to “latin1”.

	check_filesizebool

	The number of frames in the file is stored in the file header. However,
this number may be wrong for certain software. If this is True
(default), derive the number of frames also from the file size and
raise a warning if the two values do not match.

Metadata for reading

	ROIslist of dict

	Regions of interest used for recording images. Each dict has the
“top_left” key containing x and y coordinates of the top left corner,
the “bottom_right” key with x and y coordinates of the bottom right
corner, and the “bin” key with number of binned pixels in x and y
directions.

	commentslist of str

	The SPE format allows for 5 comment strings of 80 characters each.

	controller_versionint

	Hardware version

	logic_outputint

	Definition of output BNC

	amp_hi_cap_low_noiseint

	Amp switching mode

	modeint

	Timing mode

	exp_secfloat

	Alternative exposure in seconds

	datestr

	Date string

	detector_tempfloat

	Detector temperature

	detector_typeint

	CCD / diode array type

	st_diodeint

	Trigger diode

	delay_timefloat

	Used with async mode

	shutter_controlint

	Normal, disabled open, or disabled closed

	absorb_livebool

	on / off

	absorb_modeint

	Reference strip or file

	can_do_virtual_chipbool

	True or False whether chip can do virtual chip

	threshold_min_livebool

	on / off

	threshold_min_valfloat

	Threshold minimum value

	threshold_max_livebool

	on / off

	threshold_max_valfloat

	Threshold maximum value

	time_localstr

	Experiment local time

	time_utcstr

	Experiment UTC time

	adc_offsetint

	ADC offset

	adc_rateint

	ADC rate

	adc_typeint

	ADC type

	adc_resolutionint

	ADC resolution

	adc_bit_adjustint

	ADC bit adjust

	gainint

	gain

	sw_versionstr

	Version of software which created this file

	spare_4bytes

	Reserved space

	readout_timefloat

	Experiment readout time

	typestr

	Controller type

	clockspeed_usfloat

	Vertical clock speed in microseconds

	readout_mode{“full frame”, “frame transfer”, “kinetics”, “”}

	Readout mode. Empty string means that this was not set by the
Software.

	window_sizeint

	Window size for Kinetics mode

	file_header_verfloat

	File header version

	chip_size[int, int]

	x and y dimensions of the camera chip

	virt_chip_size[int, int]

	Virtual chip x and y dimensions

	pre_pixels[int, int]

	Pre pixels in x and y dimensions

	post_pixels[int, int],

	Post pixels in x and y dimensions

	geometriclist of {“rotate”, “reverse”, “flip”}

	Geometric operations

SPIDER-PIL Spider 2D image

Extensions: None

From the Pillow docs:

PIL reads and writes SPIDER image files of 32-bit floating point data
(“F;32F”).

PIL also reads SPIDER stack files containing sequences of SPIDER images. The
seek() and tell() methods are supported, and
random access is allowed.

The write() method sets the following attributes:

	format

	Set to SPIDER

	istack

	Set to 1 if the file is an image stack, else 0.

	nimages

	Set to the number of images in the stack.

A convenience method, convert2byte(), is provided for
converting floating point data to byte data (mode L):

im = Image.open('image001.spi').convert2byte()

Writing files in SPIDER format

The extension of SPIDER files may be any 3 alphanumeric characters. Therefore
the output format must be specified explicitly:

im.save('newimage.spi', format='SPIDER')

For more information about the SPIDER image processing package, see the
SPIDER homepage [https://spider.wadsworth.org/spider_doc/spider/docs/spider.html] at Wadsworth Center [https://www.wadsworth.org/].

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

SUN-PIL Sun Raster File

Extensions: .ras

No docs for SUN.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

SWF Shockwave flash

Extensions: .swf

Shockwave flash (SWF) is a media format designed for rich and
interactive animations. This plugin makes use of this format to
store a series of images in a lossless format with good compression
(zlib). The resulting images can be shown as an animation using
a flash player (such as the browser).

SWF stores images in RGBA format. RGB or grayscale images are
automatically converted. SWF does not support meta data.

Parameters for reading

	loopbool

	If True, the video will rewind as soon as a frame is requested
beyond the last frame. Otherwise, IndexError is raised. Default False.

Parameters for saving

	fpsint

	The speed to play the animation. Default 12.

	loopbool

	If True, add a tag to the end of the file to play again from
the first frame. Most flash players will then play the movie
in a loop. Note that the imageio SWF Reader does not check this
tag. Default True.

	htmlbool

	If the output is a file on the file system, write an html file
(in HTML5) that shows the animation. Default False.

	compressbool

	Whether to compress the swf file. Default False. You probably don’t
want to use this. This does not decrease the file size since
the images are already compressed. It will result in slower
read and write time. The only purpose of this feature is to
create compressed SWF files, so that we can test the
functionality to read them.

TARGA-FI Truevision Targa

Extensions: .tga, .targa

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

TGA-PIL Targa

Extensions: .tga

From the Pillow docs:

PIL reads 24- and 32-bit uncompressed and run-length encoded TGA files.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

TIFF-FI Tagged Image File Format

Extensions: .tif, .tiff

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

TIFF-PIL TIFF format (Pillow)

Extensions: .tif, .tiff

From the Pillow docs:

Pillow reads and writes TIFF files. It can read both striped and tiled
images, pixel and plane interleaved multi-band images. If you have
libtiff and its headers installed, PIL can read and write many kinds
of compressed TIFF files. If not, PIL will only read and write
uncompressed files.

Note

Beginning in version 5.0.0, Pillow requires libtiff to read or
write compressed files. Prior to that release, Pillow had buggy
support for reading Packbits, LZW and JPEG compressed TIFFs
without using libtiff.

The write() method sets the following
info properties:

	compression

	Compression mode.

New in version Pillow: 2.0.0

	dpi

	Image resolution as an (xdpi, ydpi) tuple, where applicable. You can use
the tag attribute to get more detailed
information about the image resolution.

New in version Pillow: 1.1.5

	resolution

	Image resolution as an (xres, yres) tuple, where applicable. This is a
measurement in whichever unit is specified by the file.

New in version Pillow: 1.1.5

The tag_v2 attribute contains a dictionary
of TIFF metadata. The keys are numerical indexes from
TAGS_V2. Values are strings or numbers for single
items, multiple values are returned in a tuple of values. Rational
numbers are returned as a IFDRational
object.

New in version Pillow: 3.0.0

For compatibility with legacy code, the
tag attribute contains a dictionary of
decoded TIFF fields as returned prior to version 3.0.0. Values are
returned as either strings or tuples of numeric values. Rational
numbers are returned as a tuple of (numerator, denominator).

Deprecated since version 3.0.0.

Saving Tiff Images

The save() method can take the following keyword arguments:

	save_all

	If true, Pillow will save all frames of the image to a multiframe tiff document.

New in version Pillow: 3.4.0

	tiffinfo

	
A ImageFileDirectory_v2 object or dict
object containing tiff tags and values. The TIFF field type is
autodetected for Numeric and string values, any other types
require using an ImageFileDirectory_v2
object and setting the type in
tagtype with
the appropriate numerical value from
TiffTags.TYPES.

New in version Pillow: 2.3.0

Metadata values that are of the rational type should be passed in
using a IFDRational object.

New in version Pillow: 3.1.0

For compatibility with legacy code, a
ImageFileDirectory_v1 object may
be passed in this field. However, this is deprecated.

New in version Pillow: 3.0.0

Note

Only some tags are currently supported when writing using
libtiff. The supported list is found in
LIBTIFF_CORE.

	compression

	A string containing the desired compression method for the
file. (valid only with libtiff installed) Valid compression
methods are: None, "tiff_ccitt", "group3",
"group4", "tiff_jpeg", "tiff_adobe_deflate",
"tiff_thunderscan", "tiff_deflate", "tiff_sgilog",
"tiff_sgilog24", "tiff_raw_16"

These arguments to set the tiff header fields are an alternative to
using the general tags available through tiffinfo.

description

software

date_time

artist

	copyright

	Strings

	resolution_unit

	A string of “inch”, “centimeter” or “cm”

resolution

x_resolution

y_resolution

	dpi

	Either a Float, 2 tuple of (numerator, denominator) or a
IFDRational. Resolution implies
an equal x and y resolution, dpi also implies a unit of inches.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

TIFF TIFF format

Extensions: .tif, .tiff, .stk, .lsm

Provides support for a wide range of Tiff images.

Images that contain multiple pages can be read using imageio.mimread()
to read the individual pages, or imageio.volread() to obtain a
single (higher dimensional) array.

Parameters for reading

	offsetint

	Optional start position of embedded file. By default this is
the current file position.

	sizeint

	Optional size of embedded file. By default this is the number
of bytes from the ‘offset’ to the end of the file.

	multifilebool

	If True (default), series may include pages from multiple files.
Currently applies to OME-TIFF only.

	multifile_closebool

	If True (default), keep the handles of other files in multifile
series closed. This is inefficient when few files refer to
many pages. If False, the C runtime may run out of resources.

Parameters for saving

	bigtiffbool

	If True, the BigTIFF format is used.

	byteorder{‘<’, ‘>’}

	The endianness of the data in the file.
By default this is the system’s native byte order.

	softwarestr

	Name of the software used to create the image.
Saved with the first page only.

Metadata for reading

	planar_configuration{‘contig’, ‘planar’}

	Specifies if samples are stored contiguous or in separate planes.
By default this setting is inferred from the data shape.
‘contig’: last dimension contains samples.
‘planar’: third last dimension contains samples.

	resolution_unit(float, float) or ((int, int), (int, int))

	X and Y resolution in dots per inch as float or rational numbers.

	compressionint

	Value indicating the compression algorithm used, e.g. 5 is LZW,
7 is JPEG, 8 is deflate.
If 1, data are uncompressed.

	predictorint

	Value 2 indicates horizontal differencing was used before compression,
while 3 indicates floating point horizontal differencing.
If 1, no prediction scheme was used before compression.

	orientation{‘top_left’, ‘bottom_right’, …}

	Oriented of image array.

	is_rgbbool

	True if page contains a RGB image.

	is_contigbool

	True if page contains a contiguous image.

	is_tiledbool

	True if page contains tiled image.

	is_palettebool

	True if page contains a palette-colored image and not OME or STK.

	is_reducedbool

	True if page is a reduced image of another image.

	is_shapedbool

	True if page contains shape in image_description tag.

	is_fluoviewbool

	True if page contains FluoView MM_STAMP tag.

	is_nihbool

	True if page contains NIH image header.

	is_micromanagerbool

	True if page contains Micro-Manager metadata.

	is_omebool

	True if page contains OME-XML in image_description tag.

	is_sgibool

	True if page contains SGI image and tile depth tags.

	is_stkbool

	True if page contains UIC2Tag tag.

	is_mdgelbool

	True if page contains md_file_tag tag.

	is_mediacybool

	True if page contains Media Cybernetics Id tag.

	is_stkbool

	True if page contains UIC2Tag tag.

	is_lsmbool

	True if page contains LSM CZ_LSM_INFO tag.

	descriptionstr

	Image description

	description1str

	Additional description

	is_imagejNone or str

	ImageJ metadata

	softwarestr

	Software used to create the TIFF file

	datetimedatetime.datetime

	Creation date and time

Metadata for writing

	photometric{‘minisblack’, ‘miniswhite’, ‘rgb’}

	The color space of the image data.
By default this setting is inferred from the data shape.

	planarconfig{‘contig’, ‘planar’}

	Specifies if samples are stored contiguous or in separate planes.
By default this setting is inferred from the data shape.
‘contig’: last dimension contains samples.
‘planar’: third last dimension contains samples.

	resolution(float, float) or ((int, int), (int, int))

	X and Y resolution in dots per inch as float or rational numbers.

	descriptionstr

	The subject of the image. Saved with the first page only.

	compressint

	Values from 0 to 9 controlling the level of zlib (deflate) compression.
If 0, data are written uncompressed (default).

	predictorbool

	If True, horizontal differencing is applied before compression.
Note that using an int literal 1 actually means no prediction scheme
will be used.

	volumebool

	If True, volume data are stored in one tile (if applicable) using
the SGI image_depth and tile_depth tags.
Image width and depth must be multiple of 16.
Few software can read this format, e.g. MeVisLab.

	writeshapebool

	If True, write the data shape to the image_description tag
if necessary and no other description is given.

	extratags: sequence of tuples

	Additional tags as [(code, dtype, count, value, writeonce)].

	codeint

	The TIFF tag Id.

	dtypestr

	Data type of items in ‘value’ in Python struct format.
One of B, s, H, I, 2I, b, h, i, f, d, Q, or q.

	countint

	Number of data values. Not used for string values.

	valuesequence

	‘Count’ values compatible with ‘dtype’.

	writeoncebool

	If True, the tag is written to the first page only.

WBMP-FI Wireless Bitmap

Extensions: .wap, .wbmp, .wbm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

WEBP-FI Google WebP image format

Extensions: .webp

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

WMF-PIL Windows Metafile

Extensions: .wmf, .emf

From the Pillow docs:

PIL can identify playable WMF files.

In PIL 1.1.4 and earlier, the WMF driver provides some limited rendering
support, but not enough to be useful for any real application.

In PIL 1.1.5 and later, the WMF driver is a stub driver. To add WMF read or
write support to your application, use
PIL.WmfImagePlugin.register_handler() to register a WMF handler.

from PIL import Image
from PIL import WmfImagePlugin

class WmfHandler:
 def open(self, im):
 ...
 def load(self, im):
 ...
 return image
 def save(self, im, fp, filename):
 ...

wmf_handler = WmfHandler()

WmfImagePlugin.register_handler(wmf_handler)

im = Image.open("sample.wmf")

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

XBM-FI X11 Bitmap Format

Extensions: .xbm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

XBM-PIL X11 Bitmap

Extensions: .xbm

From the Pillow docs:

PIL reads and writes X bitmap files (mode 1).

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

XPM-FI X11 Pixmap Format

Extensions: .xpm

This is the default format used for FreeImage. Each Freeimage
format has the ‘flags’ keyword argument. See the Freeimage
documentation for more information.

The freeimage plugin requires a freeimage binary. If this binary
not available on the system, it can be downloaded manually from
<https://github.com/imageio/imageio-binaries> by either

	the command line script imageio_download_bin freeimage

	the Python method imageio.plugins.freeimage.download()

Parameters for reading

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image reading.

Parameters for saving

	flagsint

	A freeimage-specific option. In most cases we provide explicit
parameters for influencing image saving.

XPM-PIL X11 Pixel Map

Extensions: .xpm

From the Pillow docs:

PIL reads X pixmap files (mode P) with 256 colors or less.

The write() method sets the following
info properties:

	transparency

	Transparency color index. This key is omitted if the image is not
transparent.

Parameters for reading

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

XVTHUMB-PIL XV thumbnail image

Extensions: None

No docs for XVThumb.
Parameters for reading
———————-

	pilmodestr

	From the Pillow documentation:

	‘L’ (8-bit pixels, grayscale)

	‘P’ (8-bit pixels, mapped to any other mode using a color palette)

	‘RGB’ (3x8-bit pixels, true color)

	‘RGBA’ (4x8-bit pixels, true color with transparency mask)

	‘CMYK’ (4x8-bit pixels, color separation)

	‘YCbCr’ (3x8-bit pixels, color video format)

	‘I’ (32-bit signed integer pixels)

	‘F’ (32-bit floating point pixels)

PIL also provides limited support for a few special modes, including
‘LA’ (‘L’ with alpha), ‘RGBX’ (true color with padding) and ‘RGBa’
(true color with premultiplied alpha).

When translating a color image to grayscale (mode ‘L’, ‘I’ or ‘F’),
the library uses the ITU-R 601-2 luma transform:

L = R * 299/1000 + G * 587/1000 + B * 114/1000

	as_graybool

	If True, the image is converted using mode ‘F’. When mode is
not None and as_gray is True, the image is first converted
according to mode, and the result is then “flattened” using
mode ‘F’.

 nav.xhtml

 Table of Contents

 		
 Welcome to imageio’s documentation!

 		
 Getting started

 		
 Installation

 		
 Developers

 		
 Usage examples

 		
 Read an image of a cat

 		
 Read from fancy sources

 		
 Iterate over frames in a movie

 		
 Grab screenshot or image from the clipboard

 		
 Grab frames from your webcam

 		
 Convert a movie

 		
 Read medical data (DICOM)

 		
 Volume data

 		
 Writing videos with FFMPEG and vaapi

 		
 Optimizing a GIF using pygifsicle

 		
 Transitioning from Scipy

 		
 Reference

 		
 User API

 		
 Docs for the formats

 		
 Single images

 		
 Multiple images

 		
 Single volumes

 		
 Multiple volumes

 		
 Command line scripts

 		
 Environment variables

 		
 Standard images

 		
 Developer documentation

 		
 Developer API

 		
 Writing plugins

 		
 What is a plugin

 		
 Registering

 		
 What methods to implement

 		
 Example / template plugin

_static/ajax-loader.gif

_static/comment-bright.png

_static/minus.png

_static/file.png

_static/plus.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

